Integration of root phenes revealed by intensive phenotyping of root system architecture and anatomy

Larry M. York, Malcolm Bennett, John Foulkes, and Jonathan Lynch

Centre for Plant Integrative Biology
University of Nottingham, UK

Architectural and anatomical integration affected maize root system evolution

X-ray computed tomography

Integration among whorls affects maize growth in the field

Intensive phenotyping of maize root crowns involves removing whorls of roots and measuring root phenes on every whorl (above).

Architectural and anatomical root phenes evolved towards nitrogen acquisition efficiency (see below).

Phene states vary within maize root crowns, among genotypes, and exhibit plasticity to soil nitrogen levels, whether high or low (above).

The relation of individual phenes to plant growth in the field are informative (A-D), but their integration (E) provides the most explanatory power (above).

Sixteen hybrids from the past 100 years in the USA were grown at two nitrogen levels and three densities that represent historic and current agronomic conditions (above, left). Current material performed better in all conditions (above, right). Architectural and anatomical root phenes evolved towards nitrogen acquisition efficiency (see below).

The number of xylem vessels, tubes for transporting water in center of the root, increased while the area of each vessel decreased in modern material compared to old (left).

Aerenchyma, air filled spaces in cortex, increased in low nitrogen soil and at greater population densities (right).

Skeletonization of 3D root systems (above) will allow measurements of global properties like volume of the convex hull, and of local properties like lengths and angles of the different root classes.

Modern material had fewer nodal roots, longer laterals, greater distance from the shoot to lateral emergence, and more shallow nodal root angles (left).

The number of xylem vessels, tubes for transporting water in center of the root, increased while the area of each vessel decreased in modern material compared to old (left).

Acknowledgements:
Tania Galindo-Castañeda imaged the anatomical sections using laser ablation tomography
James Johnson provided the 3D skeletonization

References:

X-ray computed tomography (left) allows the non-destructive imaging of 3D root systems in soil.

Skeletonization of 3D root systems (above) will allow measurements of global properties like volume of the convex hull, and of local properties like lengths and angles of the different root classes.

The University of Nottingham

UNITED KINGDOM • CHINA • MALAYSIA