Influence of deep vortices on the ocean surface
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CONTEXT APPROACH NUMERICAL MODELS
Highly evaporative basins can exchange water with the open ocean through ejection of Deep anticyclones of a-priori known structure are introduced in an idealized ocean at rest.
warm and salty currents at intrathermocline depths (up to 1000m). Currents Their impact on the sea-surface is evaluated in terms of sea-level anomaly (SLA). The Steady Case
Interaction with the surrounding environment can cause Instability, leading to the study Is car_rled out b)_/ means of ana_lyt_lc;al model_s In the qua3|-geostroph|c framework as Using a PE model [Shchepetkin and McWilliams, 2005] we evaluate the SLA generated by deep
formation of mesoscale and submesoscale deep vortices. well as quasi-geostrophic (QG) and primitive-equation (PE) numerical models. : ) : . . : g : .7
: : : : anticyclones in a f-plane configuration. The resulting SLA is positive and it maintains a
The Persian Gulf, Red Sea and Mediterranean Sea are examples of evaporative basins . : : :
) : . . monopolar structure. The dependence on the vortex parameters is derived from simulations.
and are sources of deep vortices (mostly anticyclones) for the Indian and Atlantic
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Deep isolated anticyclones of known potential vorticity q (R-vortices, [Morel and = 26 | =2
McWilliams, 1997]) are studied by means of point vortex theory. The associated surface £ 30| 3 @ e | ,f J
stream function, which is proportional to sea-surface elevation in the QG framework, is N 400 - |+ 1245 | 5 08
obtained through potential vorticity inversion. Analytical solutions to this problem are ~500} e | . | | | | 0.6
possible in an ocean at rest and with uniform stratification. The resulting SLA is positive 00l = I ] Bes
and monopolar (steady signature). The dependence on the vortex parameters is also derived. o s ' 02
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MOTIVATION H* CONCLUSIONS AND PERSPECTIVES
Most of the oceanic vortices are coherent and highly energetic structures. They trap Deep anticyclones can generate monopolar and dipolar sea-level anomalies in a steady and a
water masses from their origination areas and carry them for long distances dynamic case, respectively. The results of the dynamic case show that anticyclones with no
(O(10°%km)) across the ocean, significantly contributing to the three-dimensional AH Initial signature can eventually develop one as a result of their displacement. The modelled SLA
distribution of active and passive tracers (e.g., heat and salt). Vortex detection is thus “ IS compatible with future SWOT measurements if mesoscale structures are taken into account.
an important task in order to have a complete description of the global ocean. Drifting Vortex _ In a future analysis, the SLA generated by deep anticyclones will be studied in a realistic
Surface-intensified cyclones and anticyclones often have a clear signature at the sea- context. In particular, the outputs of a high-resolution realistic model [Barbosa Aguiar et al,.
surface and they can be studied using satellite data, providing a global scale and O Jo Qi = Jo 2013] will be used to investigate the surface signature of Meddies, which are deep anticyclones
synoptic information. [Chelton et al., 2011, Frenger et al., 2013]. 2= H* — AH 1= H* generated by water exchanges between the Mediterranean Sea and the Atlantic Ocean.
Deep vortices also play a role in advection of active and passive tracers, but can be
much harder to detect. We thus investigate their |_nfluence on the sea-surface In terms 0 Eo + fo 0, — 1 + fo BIBLIOGRAPHY _
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