
Moreover, the USLE approach provides a significant improvement when compared to the 
results of probabilistic seismic hazard analysis, e.g. the maps resulted from the Global 
Seismic Hazard Assessment Project (GSHAP). We apply the USLE approach to evaluating 
seismic hazard and risks to population of the three territories of different size representing a 
sub-continental and two different regional scales of analysis, i.e. the Himalayas and 
surroundings, Lake Baikal, and Central China regions.

The authors acknowledge the support from the Russian Foundation for Basic Research, Department of Science and Technology of India, and GFNS of People's Republic of China 
(grants RFBR № 13-05-91167, GFNS No. 51311120080, RFBR № 14-05-92691, and DST No. INT/RFBR/P-176).

The Unified Scaling Law for Earthquakes (USLE), 
that generalizes the Gutenberg–Richter recurrence 
relation, has evident implications since any estimate 
of seismic hazard depends on the size of the territory 
that is used for investigation, averaging, and 
extrapolation into the future. Therefore, the hazard 
may differ dramatically when scaled down to the 
proportion of the area of interest (e.g. territory 
occupied by a city) from the enveloping area of 
investigation. In fact, given the observed patterns of 
distributed seismic activity the results of multi-scale 
analysis embedded in USLE approach demonstrate 
that traditional estimations of seismic hazard and 
risks for cities and urban agglomerations are usually 
underestimated.  
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The results of the global and regional analyses (Keilis-Borok et al., 1989; Kossobokov & Mazhkenov, 1994; 
Kossobokov & Nekrasova, 2003; 2005; 2007; Nekrasova & Kossobokov 2002; 2003; 2006; Nekrasova, 2008) 
imply that the recurrence of earthquakes at a seismically prone site, for a wide range of magnitudes M and sizes 

LÎ(L , L ), can be described as Unified Scaling Law for Earthquakes (USLE) by the following formula:- +

A B´(5-M) -C                 N(M, L)=10 ´10 ´L

where L´L is a square embedding seismic locus and A, B, C are constants. 

A catalogue of earthquakes is used as initial input data source. A space-time-magnitude volume, S ×T × M is 
considered, where S is the territory, T is time interval from T to T , and M is the magnitude range above M ; 0 1 0

the events with magnitude m ≥ M  are reasonably complete in the catalogue since T . The input data are 0 0

processed as follows (Fig. 1):

1. The magnitude range M is subdivided into q adjacent intervals of length ΔM –  
 M  = {m : M  + (j − 1) ΔM ≤ m <M  + j ΔM},   j = l,2,...,q.j 0 0

2. The entire area S is subdivided into a hierarchy of h levels. The 0-level corresponds to the entire S imbedded 
in a square of side length L  (a square of side length L here is a set {(x, y) : x  ≤ x < x  + L; y  ≤ x < y  + L}). In the two 0 1 1 1 1

successive levels i and i+1 (i = 0, l, ... , h − 1) of hierarchy each square of side length L  is split into the four equal i

squares of side length L = L /2. A square at the level i of this hierarchy can be denoted as w (e) for any point e i+1 i i
i i

inside it and, at the same time, as Q  where r is the index number of this square between 1 and 4 . r

Method

4. Estimates of A, B, and C in (2) are derived from the set of linear algebraic equations log N  = A − B(M  − 10 ji j

M ) + ClogL  by the least squares method. Unlike many other recent applications (e.g., Bak et al. 2002) the 0 i

method makes heuristic adjustments for heterogeneity of seismic distribution, as well as for consistency of the 

real data statistics in different magnitude ranges. Specifically, the equations that correspond to evidently 

incomplete samples of data due to extremely low recurrence rates of higher magnitude earthquakes in an area are 

excluded from computations. For this purpose a heuristic limitation requiring log  (N  / N ) > const on transfer 10 j,i j+1,i

from the magnitude range M  to M  (where const is a free parameter of the SCE algorithm, usually set to 2) is j j+1

used. Similar limitation - log  (N / N ) > const - is introduced for the transfer from (i-1)-th to i-th level of spatial 10 j,i j,i-1

hierarchy.

5. In addition to the original prototype algorithm (Kossobokov and Mazhkenov 1988), the steps 1-4 are 

applied many (usually 100) times with randomized box counting settings at each seismically active location 

(Nekrasova and Kossobokov 2002). The resulting series of multiple estimates of the three coefficients are 

used to determine the final average values of A, B, and C along with their standard errors σ , σ , and σ .A B C

The graphs of typical counts of N  for a region : a ji

model sample of “epicenters” on the classical Koch's 

curve and the real one for the area of Los-Angeles mega-

agglomeration are well constrained, while a sample from 

the US Geological Survey and National Earthquake 

Information Center, USGS/NEIC, Global Hypocenters 

Data Base system catalogue (GHDB, 1989) for an area of 

Tokyo  may exemplify possible complications and the 

heuristic adjustments for heterogeneity of seismic 

distribution of the SCE algorithm.

3. Using the earthquake catalog, for each one out of the q 

magnitude ranges and for each one out of the h levels of hierarchy, the 

following number N  is computedji

i 2N  = [ ∑( n (Q ))  ] / N     (3)ji j r j

i  
where summation extends over all areas { Q } at the i-th level of r

ihierarchy; n (Q ) is the number of events from a magnitude range M  in an j r j

iarea Q  of linear size L ; N  is the total number of events from a magnitude r i j

range Mj.

It should be mentioned that this estimate of fractal dimension suggested 

in (Kossobokov and Mazhkenov 1988; 1994), although originally very 

close in motivation to estimation of the Hausdorff capacity dimension D  0

(Mandelbrot 1982), in essence, corresponds to the correlation dimension 

D  (Atmanspacher et al. 1988). 2

Usually, N  are normalized in time to 1 year and in space to an area of ji

1 degree of the Earth meridian in length. 
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R(g)=H(g) Ä O(g) Ä V(O(g))

H(g)

O(g)

Any kind of risk R(g) estimates results from a convolution of 
the natural hazard at location g - H(g), 

with the exposed  objects at risk at g - O(g) 
along with their vulnerability V(O). 

 The population density distribution based on GPWv3 estimate for 2010 by Center for International Earth Science Information Network (CIESIN), Columbia University; and Centro Internacional 
de Agricultura Tropical (CIAT). 2005. Gridded Population of the World, Version 3 (GPWv3). Palisades, NY: Socioeconomic Data and Applications Center (SEDAC), Columbia University. 
Available at http://sedac.ciesin.columbia.edu/gpw.
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Model map GSHAP USLE based 

Himalayas and surroundings 

PGA ratio any >2 >4 >8 any >2 >4 >8 

M = 5 4666 86 39 17 4746 36 23 18 

M = 6 702 57 21 8 706 5 2 0 

M = 7 121 33 14 5 121 5 2 0 

Lake Baikal region 

PGA ratio any >2 >4 >8 any >2 >4 >8 

M = 5 176 7 3 0 176 4 1 1 

M = 6 42 5 3 0 42 3 1 1 

M = 7 7 3 2 0 7 2 0 0 

Central China region 

PGA ratio any >2 >4 >8 any >2 >4 >8 

M = 5 158 5 4 1 158 2 1 0 

M = 6 37 5 4 1 37 2 1 0 

M = 7 7 4 4 1 7 2 1 0 
 

Verification
Rigorous and objective testing of seismic hazard 

assessments against the real seismic activiy must 
become the necessary precondition for any 

responsible seismic risk estimation. 

GSHAP

USLE

Difference of the empirical probability distributions of the model PGA values in a region For both models the percentage of unacceptable 
errors increase with magnitude: from 2% to 27%  
for GSHAP and from 1% to 4% for USLE in 
Himalayas, from 4% to 43%  for GSHAP and from 
2% to 29% for USLE in Baikal, and from 3% to 57%  
for GSHAP and from 1% to 29% for USLE in 
Central China. 

The number of earthquakes with the estimated PGA values at epicenter exceeding the value on the model map

The USLE model outscore GSHAP in identifying correctly the 
sites of moderate, strong, and significant earthquakes. 
Specifically, the number of unacceptable errors, when PGA value 
on a map at epicenter of real earthquake is by factor 2 or greater 
less than attributed to this earthquake, is several times larger 
for the GSHAP map than for the USLE one (e.g., 11.4, 1.7, 
and 2.5 times for strong earthquakes in Himalayas and 
surroundings, Lake Baikal, and Central China region, respectively). 

Let us check both approaches at the locations of real 
earthquakes of magnitude 5 or larger with hypocenters 
above 70 km as reported in the USGS/NEIC Global Hypocenters 
Data Base System for the time period from 1900 to the present

The Global Seismic Hazard Assessment Program (GSHAP) was initiated in 1992 and 
approved as a demonstration project under the International Decade for Natural 
Disaster Reduction declared by the United Nations Organization (UN/IDNDR). The 
GSHAP was completed in 1999 and the probabilistic seismic hazard assessment 
maps (Giardini et al. 1999; Shedlock et al. 2000) displaying global distribution of 
maximum PGA with 10% chance of exceedence in 50 years in the 0.1°×0.1° mesh 
were published (the archive containing the GSHAP PGA numerical evaluations for the 
whole world is in open access at http://www.seismo2009.ethz.ch/GSHAP/gshpub.zip).

PGA model map
USLE

GSHAP The maps obtained by GSHAP differ from those based on USLE  dramatically. 
At a glance the USLE based maps appear to be more selective and avoid 
some of the errors of GSHAP like the locations of the 2001 Bhuj and 2004 
Sumatra-Andoman great earthquakes on the sub-continental scale map of 
Himalayas and surroundings
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The USLE coefficients were used for estimation and mapping the expected maximum 
magnitude M  with a 10% chance of exceedence in 50 years. Specifically, for each 0.5°×0.5° cell max

at seismic location on a regional map we calculate the expected numbers of events from 
magnitude ranges M  in 50 years, i.e. N (M, 0.5°) = 50 × N(M, 0.5°), and then find the maximum j 50 j j

magnitude, M , with the expected number N (M , 0.5°) ≥ 10%.Naturally, these are the max 50 max

estimates of traditional maximum magnitude with 10% chance of exceedence in 50 years.

FFor each grid point we apply the empirical formula for acceleration produced by a source of M  max

as inspired from (Parvez et al. 2001) –
-1.5Acc(M , D) = const×g×D ×exp(M  − 5) ,max max

2where D is the source-receiver distance on a 0.25°×0.25° grid, const = 6, g = 9.81 m/s  is the 
gravity constant, and exp(x) is the natural exponent of x. The maximum of acceleration values 
computed at a grid point is assigned to it. We have opted the minimum and maximum 
distances of 10 km and 500 km, respectively.

Seismic hazard and risk estimation
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Fractal dimension  = C per order of distance 
in degrees

Log of recurrence rate = A per year

USLE coefficients estimation
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Logarithm of the empirical density distribution of seismic activity = r

Unified Scaling Law for Earthquakes: Seismic hazard and risk assessment 
for Himalayas, Lake Baikal, and Central China regions
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