Detection of gravity waves and infrasound signals at the USArray

Catherine D. de Groot-Hedlin and Michael A.H. Hedlin

Laboratory for Atmospheric Acoustics
Institute of Geophysics and Planetary Physics
University of California, San Diego

Outline

- 1 The USArray Transportable Array (TA)
- 2 GW Detection method
- 3 Case studies of atmospheric gravity waves
- 4 Infrasound event detection
 - a) A new detection method

US Transportable Array February, 2006

February, 2010 barometers were added

L2A

USArray Transportable Array & IMS infrasound arrays

Three atmospheric sensors at each site – MEMS: D.C. - 100 s

- Setra: D.C. 1 Hz
- NCPA infrasound microphone: 200 s Nyquist

Pressure sensor response

Overlapping pass-bands provides continuous coverage from DC to 20 Hz

Atmospheric gravity waves

Example event: April, 2011

Recast TA as massive collection of arrays

Use Delauney triangulation

Remove oddly shaped arrays

Are left with 580 triads

Filter & cross-correlate to detect coherent signals

$$t_{ij} + t_{jk} + t_{ki} < tcut$$

Consistency criterion, Cansi, 1995

Three steps

- Divide TA into non-overlapping triads
- Process, looking for arrivals consistent with gravity wave phase velocities
- Find groups of neighboring triads with consistent detections

Comparison with satellite observations

Gravity waves detected at Earth's surface on MEMS sensor data

Stratospheric Gravity waves detected by the Atmospheric Infrared Sounder (AIRS) satellite

From Lars Hoffmann

L2A

Second example: Largest Event of 2011

Pressure pattern & cloud pattern

Application to infrasound

Application to infrasound detections - incoherent processing

- Infrasound signals are incoherent between stations.
- Signal envelopes are x-correlated → signal speed & direction

L2A

Ohio meteoroid

Detections at a quiet time of day

Detections over a noisy 75 minute period - day 213, 2013

Separation into clusters

- Event Catalog
- Over 5 months

Next stage of gravity wave analysis

2010-2014 TA contains ~ 3,600 triads

Gravity wave occurrence 2010-2014

Gravity wave occurrence 2010-2014

Gravity wave occurrence 2010-2014

Summary

Automated gravity wave detector:

- Gravity waves are coherent over much smaller scales than the entire TA
- Divide the TA into many sub-arrays to track the wavefield motion → USArray has characteristics of both array and network
- · Yields a discretized view of the wave field
- Gravity waves observed at the surface are also observed by satellite

Automated infrasound detector:

- Uses GW detector method, except on infrasound envelopes
- Separation of detections into clusters is key

Other possible applications:

• Aid atmospheric scientists in GW detection

Project was supported by NSF Earthscope EAR-1358520

Concluding remarks

- Seismometers readily record atmospheric events
- The TA has provided a large catalog of events for study of infrasound propagation/atmospheric structure
- The upgraded TA is a new, large, observatory for study of the Earth's interior, atmosphere and interaction between the two

