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2. Study site and Method I | O S0 000 1S a0 %00 a0 ask 0 S0 idlo oo a0 2600 an w0 o sho oo s a0 20 s o || - Rainfall events altered the distribution of erosion area and grain-size (Fig. 6,7).
#-=% Ohya-kuzure € e o . Interval camera (a) (b) (c) More significant changes were detected after the debris flows (Fig. 6,7).
(a)f -—4 Jandslide P gL Fig. 5 Relationships between the rainfall duration and the rainfall index. | — The riverbed condition (i.e., grain-size distribution (Fig. 6), deposit depth (Fig. 8)) were
& 2777 Ichino-sawa g, camera ~ (@) 10-minute peak intensity, (b) Hour peak intensity, () Cumulative rainfall. significantly different before and after flowing down of the debris flow.
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""" ‘In contrast, hour peak intensity, cumulative rainfall and rainfall duration — Several debris flows of different magnitudes occurred during the study period.
. show no influence on the occurrence (Fig. 5bc). Moreover, sediment yield was not dominated by excess rainfall and the number of times of

debris flows.
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— QOccurrence of debris flow was not dominated

-However, rainfall events exceeding 5mm/10min did not necessarily cause || occurrence of debris flow events (Fig. 9).

— These results suggest that the magnitude of the debris flows were different
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only by the rainfall intensity and duration.

according to the influence of riverbed condition. Thus, in upstream area,
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Fig. 1 Study site. (a) Ichinosawa subwatershed of Ohya-kuzure landslide, central Japan
(N35°18'317, E 138" 18'55"), (b) The location of the monitoring and survey area.

The basin experienced a deep-seated landslide about 300 years ago and is currently actively
yielding with a clear annual cycle.

. - During the winter season, sediment

is deposited on the valley bottom by
freeze-thaw and weathering (Fig.
2a). In summer season, the
deposited sediment is discharged
incrementally by debris flows related
- to storm events (Fig 2b).

Flg 2 Changes of dep03|ted sedlment in Ichlno -sawa

subwatershed through debris flow events.
- Topographical surveying and grain-size analysis were
performed several times between November 2011 and

1620 ¢ — May. 14 November 2014.
1 ——- Aug.23 — Point cloud data were acquired during the
= o — Nov.2{ | topographical surveying with the use of a terrestrial laser
'=1580 scanner, and used to create a high-resolution digital
2 elevation model (10 cm).
21560 | — Grain-size analysis was conducted in the upper,
= middle, and lower parts of the study site. Line-grid
Rl method was employed for the in situ analysis (Fig. 1b). Fig. 10 Changing form of debris flow surge and riverbed condition on Aug.
1520 | * Debris flow occurrence and flowing down form were 10, 2014. (a) Before the debris flow event, (b) the situation flows
0 50 100 150 200 monitored by interval cameras (interval is 10s, 15s, and down of surge, (c) After deposit surge flows down, (d) After
Distance [m] Thour). Rainfall was observed during the summer season erosion surge flows down.

Fig. 3 Channel profiles in 2012. 5y comparison with the debris flow occurrence and
magnitude (Fig. 1b).
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magnitude of the debris flow event cannot be predicted only by rainfall index.

5. Characteristics of debris flow in upstream area

- Different forms of debris flow surges observed at point A (Fig. 1b) during the rainfall events (Fig. 10).
— Surges not only induced erosion deposited sediment but also suspended and deposited sediment.
-Occurrence of these surges corresponded to the peak of 10-minute rainfall intensity (Fig 11).

— The riverbed condition successively changed during the rainfall event thereby surges repeatedly flowed down.

‘Form and duration of the surge differed nevertheless cumulative rainfall is not significantly different (Fig. 12).

. — The form of surges were not dominated only by rainfall condition.
& — Surge durations in the downstream area (point B) were often longer than the upstream area (point A) because

of the supplied erodible sediments by suspended and deposited surges.
— The changing of riverbed condition during the rainfall event
influence the magnitude and form of the debris flow.
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Fig. 11 The timing and form of debris flow surges on Aug. 10, 2014. flow event on Aug. 10, 2014.
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