Modelling impacts of second generation bioenergy production on Ecosystem Services in Europe

EGU 2015 16th April 2015, Vienna Dagmar HENNER

Short Overview

- Bioenergy Crops
- Ecosystem Services
- GHG Modelling
- Soil Carbon Change Modelling
- Ecosystem Services Valuation Tools
- Frameworks and Combination of Models
- Conclusions and future areas of interest

Importance of Bioenergy Crops

- Source of renewable energy
- Mechanism to mitigate global climate warming
 - Reducing fossil fuel
 - Uptake of CO₂
- Possible Synergies and Trade-Offs for Ecosystem Services

Second Generation Bioenergy Crops

•

- Miscanthus
- Short Rotation Forestry
- Short Rotation Coppice

Ecosystem Services

Provisioning Services

Products obtained from ecosystems

- Food
- Fresh water
- Fuelwood
- Fiber
- Biochemicals
- Genetic resources

Regulating Services

Benefits obtained from regulation of ecosystem processes

- Climate regulation
- Disease regulation
- Water regulation
- Water purification
- Pollination

Cultural Services

()

Nonmaterial benefits obtained from ecosystems

- Spiritual and religious
- Recreation and ecotourism
- Aesthetic
- Inspirational
- Educational
- Sense of place
- Cultural heritage

Supporting Services

Services necessary for the production of all other ecosystem services

Soil formation

Nutrient cycling

Primary production

Source: Millennium Ecosystem Assessment http://www.millenniumassessment.org/documents/document.300.aspx.pdf

N₂O monthly fluxes

()

MONTHLY N_2O FLUXES AT THE LINCOLNSHIRE SITES - COMPARISON MODELLED AGAINST MEASURED ON 8 SITES

Monthly N₂O fluxes from Miscanthus modelled with Daily Daycent based on data from 8 Lincolnshire sites. The modelled output was compared with two years of measured output currently available.

Impact of management on fluxes

N₂O yearly fluxes comparison Lincoln and Austria

Yearly N₂O fluxes from Miscanthus modelled with Daily Daycent based on data from the Lincoln site. The Austrian site is based on Lincoln data (weather, soil, ...) but the management practice, especially the planting and harvest, has been adapted. Most difference in the results can be seen during the first years (after planting) and during the last years of the cycle.

 \odot

modelled trace gas fluxes on Lincoln site between 2000 and 2050

Yearly trace gas fluxes from Miscanthus modelled with Daily Daycent based on data from the Lincoln site.

Yearly gross nitrification from Miscanthus modelled with Daily Daycent based on data from the Lincoln site.

 \odot \odot

C removal during harvest modelled

Yearly C removal during harvest on day 45 of each year from Miscanthus modelled with Daily Daycent based on data from the Lincoln site.

• cstraw amount of carbon removed from aboveground live pool as straw during harvest (g C m-2 harvest-1)

• stdstraw amount of carbon removed from standing dead pool as straw during harvest (g C m-2 harvest-1)

crmvst amount of carbon removed as straw during harvest (sum of cstraw and stdstraw) (g C m-2 harvest-1)

Ecosystem Services Valuation Tools

 \odot \odot

Importance of Frameworks

 \odot

Source: Smith et al (2012) The role of ecosystems and their management in regulating climate, and soil, water and air quality Journal of Applied Ecology Volume 50, Issue 4, pages 812-829, 21 DEC 2012 DOI: 10.1111/1365-2664.12016. http://onlinelibrary.wiley.com/doi/10.1111/1365-2664.12016/full#jpe12016-fig-0001

Combination of models with ArcGIS maps to represent frameworks

Source: University of Oxford.

http://www.biodiversity.ox.ac.uk/researchthemes/biodiversity-technologies/assessing-ecological-value-of-landscapes-beyond-protected-areas-left/

 \odot

Threat matrix of ecosystems service effects of transitions to differing bioenergy crops

		Arable			Semi improved			Forest		
		Miscanthus	SRC	SRF	Miscanthus	SRC	SRF	Miscanthus	SRC	SRF
Regulating Provisioning services	Biodiversity									
	Food and Fibre									
	Timber and Forest									
	Water Availability									
	Food from Marine eco.									
	Game and wild food									
	Honey									
	Ornamental resources									
	Genetic resources									
	Hazard regulation									
	Disease and pest									
	control									
	Pollination									
	Soil quality									
	Water quality									
KEY										
	ਲ Po	sitive								
	j∰ Ne	utral								
	ш Ne	gative								
		Lov	v	High						

Source: Ecosystem Land-Use Modelling & Soil C Flux Trial (ELUM). Review of the Effects of Bioenergy Crops on Ecosystem Service in the UK Context. Robert Holland, Donna Clarke and Gail Taylor (2013) Faculty of Natural & Environmental Sciences, University of Southampton, Southampton, SO17 1BJ

Confidence

Conclusions

- From cultivation to use some biofuels emit significantly less CO₂ compared to conventional petrol
- Under certain circumstances CO₂ capture is possible
- Depends on management, type of crop and initial land use – sustainability
- First results look promising

Future Areas of Interest

- Research on potential synergies and trade-offs among ecosystem services
- Food security and undeveloped or arable land
- Modelled output and framework for Europe
- Research and inclusion of climate change effects on ecosystem services

Source: Shell http://www.shell.com/g lobal/environmentsociety/environment/cli mate-change/biofuelsalternative-energiestransport/biofuels.html

Thank you for your attention

Please feel free to ask questions now. Contact information: Dagmar HENNER, email: <u>r01dnh14@abdn.ac.uk</u> University of Aberdeen