Monitoring and seasonal forecasting of meteorological droughts

E. Dutra⁽¹⁾, W. Pozzi⁽²⁾, F. Wetterhall⁽¹⁾, F. Di Giuseppe⁽¹⁾, G. Naumann⁽³⁾, P. Barbosa⁽³⁾, J. Vogt⁽³⁾, L. Magnusson⁽¹⁾, F. Pappenberger⁽¹⁾.

(1) ECMWF, Reading, United Kingdom

- (2) Group on Earth Observations, Geneva, Switzerland
- (3) Joint Research Centre, Institute for Environment and Sustainability, Ispra, Italy

emanuel.dutra@ecmwf.int

Outline

• Probabilistic monitoring:

- Observations uncertainty;
- Construction of probabilistic SPI monitoring;
- Comparison with other products.
- Seasonal forecasting:
 - Merging of monitoring and seasonal forecasts of precipitation;
 - Evaluation of the forecasts;
 - Dynamical versus climatological forecasts;
 - Drought Onset .

Final Remarks

Why probabilistic monitoring ?

Regions definition from: Giorgi and Francisco, Climate Dynamics 16, 2-3, 169-182, 2000

Average number of rain-gauges in 1x1 grid-box in GPCC

Reanalysis v6 (Doi:10.5676/DWD_GPCC/FD_M_V6_100) First guess (Doi: 10.5676/DWD_GPCC/FG_M_100)

Large reduction of stations reporting in near real time in the last decade.

-> Uncertainty in near-real time precipitation observations

This will affect the SPI monitoring.

Could we use the ECMWF ENS short-range forecasts to generate probabilistic monthly means of precipitation anomalies ?

ENS short-range forecasts (0-48h) with 51 ensemble members. Average all the forecasts of a particular month to generate 51 monthly means (F)

Need to define the precipitation anomaly (will be merged with GPCC data)

- Use the hindcast dataset, available since March 2008;
- For a particular month, the model climate is generated by the 18* past forecast dates +/- 2 weeks : 5 (weeks) x 18* (years) x 5 (ensemble members) : 450 samples (Fc)

Monthly mean anomalies of F'= F/FC are multiplied by the GPCC climatology.

* 20 years since July 2012

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Monthly precipitation in the Horn of Africa

Initial results showed that monthly means of the ENS had a reduced spread (spread error relation):

- The ENS is not designed to generate a large spread in the first forecast hours and/or to generate monthly means;
- If we use a longer forecast lead time (e.g. 5 days), we would increase the spread, but loose skill
- Increase the monthly means forecast spread:
 - F' = F a + F* (1-a); a inflation factor (4 was selected, ENS4), F* the forecast ensemble mean

Grid point temporal correlation (2009-2012) SPI-3 : GPCC versus :

Grid point temporal correlation (2009-2012) monthly precipitation anomalies

- ENS performs better then ERAI, and comparable to TRMM and FGE in the tropical regions.
- ENS has the added value of providing a probabilistic information of the SPI: partially accounts for the near-real time uncertainty of precipitation "observations".
- Part of the "better" performance of ENS, compared with ERAI comes from the merge with GPCC (we verify against GPCC)

Seasonal forecasting of SPI: merging data

How to merge the monitoring with the seasonal forecast ?

1) Bias correct seasonal forecast

2) Merge monitoring and forecasts of precipitation to create the SPI (GPCC, ERAI)

ECMWF System 4 seasonal forecasts: 6 months lead time, issued once per month

Seasonal re-forecasts of the SPI 3, 6 and 12 using four configurations:

- a) GPCC monitoring and S4 forecasts (GPCC S4);
- b) GPCC monitoring and climatological forecasts (GPCC CLM);
- c) ERAI monitoring and S4 forecasts (ERAI S4);
- d) ERAI monitoring and climatological forecasts (ERAI CLM);

Forecasts verified against GPCC: GPCC S4/CLM share part of the verification data

Yoon et al 2012, *J. Hydrometeor* Dutra et al. 2013 HESS

Probabilistic Forecasting of SPI

First lead time ROC skill score GPCC S4 vs GPCC CLM > 0.05

S4 (dynamical forecast) beats climatology Red vs Black

Difficult to beat the climatological forecasts for long SPI time scales (much of the information comes from the monitoring).

Regions where S4 precipitation has skill

Drought onset - brier skill score

0.15

0.20

0.25

0.30

Drought event: SPI-6 < -0.8 for at least 3 months **Drought onset month**: first month SPI6 < -0.8

GPCC S4 has more skill then GPCC CLM (climatological vs. dynamic forecasts), but the fields are "noisy" (even after a 3x3 smoothing).

Regions vs. maps evaluation ?

Citation: Yuan, X., and E. F. Wood (2013), Multimodel seasonal forecasting of global drought onset, *Geophys. Res. Lett.*, 40, doi:10.1002/grl.50949.

0.05

0.10

0.00

0.35

Final Remarks

• Large uncertainty in near-real time monitoring of precipitation, in particular over the tropics: drop in the number of rain-gauges;

- The use of ECMWF ensemble forecasts provides an alternative for precipitation monitoring, with comparable quality to ERA-Interim and TRMM;
- Probabilistic monitoring of precipitation provides uncertainty estimates of SPI that could be potentially useful in decision making.
- Difficult to beat the climatological forecasts for long SPI time scales (much of the information comes from the monitoring).
- Poor quality of the monitoring can reduce the skill of the forecasts significantly;
- Regions with higher S4 forecast skill are also regions with more uncertainties in near-real time monitoring;
- We can only test the probabilistic monitoring since 2009 onwards; the global SPI forecasts provide a large amount of data: Further verification is needed, in particular focusing on case studies: Ideas, suggestion are welcome.
 - Dutra, E., et al. .: Global meteorological drought Part 1: Probabilistic monitoring, Hydrol. Earth Syst. Sci., 18, 2657-2667, doi:10.5194/hess-18-2657-2014, 2014.
 - Dutra, E., et al..: Global meteorological drought Part 2: Seasonal forecasts, Hydrol. Earth Syst. Sci., 18, 2669-2678, doi:10.5194/hess-18-2669-2014, 2014.

emanuel.dutra@ecmwf.int

