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motivation

Most existing approaches to the modelling of long-term evolution of
random weakly nonlinear waves are based on the wave kinetic equation
(KE). In the water wave context, this equation is referred to as the
Hasselmann equation (Hasselmann 1962).

dn(k,x,t)

dt = Sinput + Sdiss + Snl

where n(k,t) is the 2D wave action spectrum. The interaction term S,
dominant for energy carrying waves, is derived from first principles
employing an asymptotic procedure based upon smallness of nonlinearity
parameter € and a number of additional assumptions:

Sni = 47T/To2123f012350+1—2—35(w0 +wi —wy —ws)dkigz, (1)
Where f0123 = Tlg’flg(no —+ 77,1) — Noni (le —+ 77,3), n; = Tl(kl),

do+1-2—3 = d(ko + k1 — ko — ks) and Tp123 is given by an explicit but
long expression.



motivation

The KE (Hasselmann equation) is based on two major assumptions:

@ quasi-gaussianity, implied by the statistical closure

@ quasi-stationarity, implied by the large-time limit
Quasi-stationarity means that the Hasselmann equation is not applicable
to the situations with rapid changes of the environment, such as wind
gusts. Due to the lack of alternatives, this fact is usually ignored, and the
Hasselmann theory is used to model the response to an instant and sharp
increase or decrease of wind (e.g. Young & van Agthoven 1997).
Quasi-gaussianity can be violated during a rapid transformation of the
spectrum, or even for parts of a quasi-stationary spectrum where the
growth rates are high (e.g. on the spectral front).
A clarification of the role of both assumptions is important and relevant
within and beyond the water wave context.



generalised kinetic equation (gKE)

The gKE is derived using the same statistical closure as the KE, but
without the assumption of quasi-stationarity. In the derivation of the
kinetic theory, we have the equation for the spectrum in terms of the

higher-order cumulant Jégg

on
afto = 2Im/T0123Jé})2350+1,2,3 dki23,

and the equation for the cumulant

.0
(167‘ + Aw) Jéi%:g = —2T0123 fo123,

where Aw = wWo + w1 — Wy — W3, f0123 = ngng(no +TL1) — ’)’Lonl(ng + TL3).
Classic KE derivation drops /0t and leads to the approximate solution
for large time in terms of generalised functions

P
Jé})zg)(t) = —2T9123 |:Aw + 17T5(Aw):| ]"()123(75)7

where P is “principal value”, ¢ is Dirac d-function.



generalised kinetic equation (gKE)

The gKE is derived using the exact solution of the differential equation
for the cumulant (Annenkov & Shrira 2006 JFM vol 561). The resulting
equation (gKE) has the form

0 t
% = 4Re/{T02123 [/ S P dT}
13 0
i .
—2T0123Jéi;3(0)61Awt}50+123 dki23 + Sinp/diss -

The gKE is nonlocal in time: evolution of the spectrum depends on the
previous history of evolution, starting from the initial moment when the
value of cumulant Jégg)(o) is prescribed as the initial condition.
However, the gKE can be solved iteratively. On each time step, the value
of Jégg is computed and taken as the new initial condition, so that the
‘internal’ time integration is performed over one timestep only.

Details of the algorithm: Annenkov & Shrira, Modelling transient sea
states with the generalised kinetic equation, In: Rogue and Shock Waves
in Nonlinear Dispersive Media, M.Onorato et al (eds), Springer, 2016.



direct numerical simulation (DNS-ZE)

Direct numerical simulation

is based on the Zakharov integrodifferential equation for water waves
does not depend on any statistical assumptions

since the Zakharov equation plays the role of the primitive equation
of the theory of wave turbulence, we refer to this model as direct
numerical simulation of spectral evolution (DNS-ZE)

at present, this is the only DNS algorithm that allows to trace the
evolution of wave spectra up to O(10*) periods

details of the algorithm — e.g. Annenkov & Shrira (2013) JFM 726
517-546

averaging in this study is over 100 realisations



initial conditions

As initial conditions, we consider two JONSWAP spectra with the same
frequency distribution (Hs; = 0.08 m, T, = 1 s, and v = 6), different only
in the initial directional distribution.

@ Spectrum | (“narrow”) — corresponds to N = 840 in the cos” model
@ Spectrum Il (“wide") — corresponds to N = 24

The same spectra were used as initial conditions in the experimental
study by Onorato et al (2009) and numerical studies by Toffoli et al
(2010) and Xiao et al (2013).

In particular, Xiao et al (2013) performed numerical simulations of the
evolution (only about 150 periods) of the same initial spectra using
higher-order spectral method (HOS) and broadband NLS (Dysthe
equation, BMNLS).

Thus, we can consider the short-term evolution of these spectra (without
wind forcing) with five different approaches, based on different sets of
assumptions, and use the results for comparison and validation of the
new algorithms. The KE (Hasselmann) equation is simulated using the
standard WRT algorithm (code provided by Gerbrandt van Vledder)



first 150 periods
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Evolution (first 150 periods) of spectrum | (narrow in angle) and Il
(wider in angle), with a direct comparison of 5 approaches (modified
from figure 7a,b of Xiao et al 2013)



growth rates over first 50 periods, spectrum |
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Growth rates dE(w,t)/dt over first 50 periods of evolution, with 5
approaches (values for HOS and BMNLS taken from figure 7 of Xiao et
al 2013). Initial peak is at w = 27



growth rates over first 50 periods, spectrum |l
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Growth rates dE(w,t)/dt over first 50 periods of evolution, with 5

approaches (values for HOS and BMNLS taken from figure 7 of Xiao et
al 2013). Initial peak is at w = 27



Angular broadening

As a measure of the angular width of the spectrum, it is convenient to
use the average of the second-order moment of directional distribution,
defined as

—1/2

92(k)=</oﬂ/292 (kecw) (/ Dk&dﬁ) ,

where D(k,0) is the angular distribution function of the spectrum
(Hwang et a/ 2000).



evolution of mean directional width
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Evolution (first 150 periods) of the averaged angular spread 6,, of

spectra | and Il, with a direct comparison of 5 approaches (modified from
figure 7c of Xiao et al 2013)



short-term evolution — discussion

Direct comparison of DNS-ZE with HOS and BMNLS, and of the two
kinetic equations shows that

KE and gKE results coincide in the wider case Il

in the narrow case |, the KE overestimates the amplitude of the
spectral peak

DNS-ZE, HOS and BMNLS are consistent with each other, but
different from both kinetic equations

the kinetic equations show more narrow spectra, with a pronounced
overshoot, while the DNS algorithms give wider spectra with lower
amplitude of the peak

there is a dramatic difference in the rate of angular broadening,
which is consistent between DNS-ZE, HOS and BMNLS, much
higher for gKE, and even higher for the KE

growth rates over the first 50 periods are higher for the kinetic
equations than for the DNS algorithms

This validates both the gKE and the DNS-ZE approaches in the short
term. Now we can proceed with studying the long-term evolution



long-term evolution, spectrum |
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Long-term spectral evolution for spectrum |, with the comparison of
DNS-ZE and both kinetic equations (KE and gKE). Spectra are plotted
every 300 periods



long-term evolution, spectrum Il
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Long-term spectral evolution for spectrum |l



long-term evolution of mean directional spreading
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peak wavenumber and wave steepness
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Evolution of the wavenumber of the spectral peak (with theoretical
asymptotic ~ t~2/11) and wave steepness for spectra | and |I



peak amplitude
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Evolution of the amplitude of the spectral peak (with theoretical
asymptotic ~ t*/11) for spectra | and II



growth rates for different amplitudes, spectrum |I
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Growth rates dE(w,t)/dt over first 50 periods of evolution, with DNS,
KE and gKE, for amplitude multiplied by 1/v/2, 1 and v/2



growth rates for small amplitude, spectrum Il

1.5 x10° ——DNS-ZE —— gKE —— KE(WRT)

o

(50 periods)

dE/dt

_25 1 1 L 1 L L 1
3 4 5 6 7 8 9 10

Growth rates dE(w,t)/dt over first 50 periods of evolution, with DNS,
KE and gKE, for half amplitude



scaling of growth rates

In order to understand how the growth rates of wave action n(k,t) scale
with nonlinearity within different approaches, we find the maximum value
of dn/dt and perform a numerical fit

logmaxdn/dt = vloge + 8

over 5 different amplitudes (different from the initial one by 0.5, 1/\/5
1, v/2 and 2). Thus, we draw a straight line through 5 points by least
squares, find the coefficient v and the 95% confidence bounds for it.
We know a priori that the KE, being an equation in real variables, has
the strict v = 6 scaling (that is, dn/dt ~ £%). The values of v for other
approaches are to be found numerically. The DNS can be expected to
give v = 4 (the dynamic scaling of the growth rate, rather than the
statistical one)



scaling for maximum growth rates, spectrum |
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Exponent v of the scaling as ¥ for maximum growth rates for KE, gKE
and DNS-ZE, and its 95% confidence bounds. The initial spectral peak is
at k = 47? ~ 39.5. Blue: KE(WRT), purple: gKE, orange: DNS-ZE



scaling for maximum growth rates, spectrum ||

8r

10 20 30 40 50 60 70 8 90 100

k
Exponent v of the scaling for maximum growth rates for KE, gkKE and
DNS-ZE, and its 95% confidence bounds. The initial spectral peak is at
k = 4n? ~ 39.5. Blue: KE(WRT), purple: gKE, orange: DNS-ZE



conclusions

We have considered the short- and long-term evolution of narrow spectra
without wind forcing, using three different models, employing different
sets of assumptions. Two of these models are new (gKE and DNS-ZE).
The gKE employs the statistical closure, but is free of quasi-stationarity
assumption. DNS-ZE does not depend on any statistical assumptions.

@ in the short term, DNS-ZE results show good agreement with DNS
simulations by Xiao et al (2013), both for the evolution of frequency
spectra and for the directional spreading

o the gKE agrees with the classic KE (WRT algorithm) for the
evolution of frequency spectra, unless the initial spectrum is very
narrow in angle

@ gKE and DNS-ZE allow long-term simulations of spectra, which is
not possible with other existing alternatives to the KE

@ in the long term, all three approaches demonstrate very close
evolution of integral characteristics of spectra, approaching for large
time the theoretical asymptotes of the self-similar stage of evolution



conclusions continued

@ there is a striking difference for the rate of angular broadening,
which is much larger for the gKE and especially for the KE, than for
the DNS-ZE

@ DNS-ZE results show considerably wider spectra with less
pronounced peak

@ the rates of change of the spectra obtained with the DNS-ZE are
proportional to O(c*), corresponding to the dynamical timescale of
evolution

o the gKE scaling of growth rates is close to the strict statistical
O(£%) scaling of the KE, but slightly and distinctively less

@ despite the different scaling, the growth rates are close for small
nonlinearity (¢ < 0.05) and diverge for e = O(0.1) (that is, &5
becomes larger than &%, although ¢ is small). This indicates the
presence of a certain large parameter

@ the difference of growth rate scaling in the presence of self-similarity

can be responsible for the difference in spectral shapes and rates of
angular broadening



