

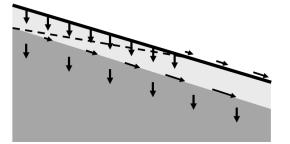
CZECH TECHNICAL UNIVERSITY IN PRAGUE FACULTY OF CIVIL ENGINEERING

Dept. of Irrigation, Drainage and Landscape Engineering

Investigating runoff generation on compacted subsoil using a field rainfall simulator

Ludek Strouhal, David Zumr, Petr Kavka

Research goals


WHAT DO WE DO AND WHY?

- \circ $\,$ Soil conservation and flood mitigation $\,$
- Soil erosion, small rural catchment hydrology
- \circ Understanding \rightarrow preventing
- Runoff formation processes
- Observations and simulations

1/7

.

- Compacted subsoil phenomenon and large macroporosity of the topsoil
- Saturated area runoff concept
- Lateral subsurface stormflow as dominant runoff process

CTU in Prague

ŧ

2/7

Experimental site

WHERE DO WE DO IT?

Experimental Bykovicky stream catchment, Central Bohemia

- $\circ~$ 6,3 km², 60 % arrable land, 67 % sandy loam, since 2005
- Erosion plots for both continuous and event-based monitoring
- Basic hydrologic characteristics monitoring

Additional observed catchment Nucice and plots near Nove

Straseci for specific and comparative studies

CTU in Prague

 $(\mathbf{\hat{h}})$

3/7

Experimental tools and setup

HOW DO WE DO IT?

- Rainfall simulator consisting of folding boom on telescopic legs and trailer with 1 m³ tank, pump and control unit
- 9x 40WSQ nozzles 1,2 m apart, 2,6 m height, el-magnetic valves
- Control unit maintaining constant pressure working in schemes enabling arbitrary rainfall intensity from 20 to 150 mm/h with 5 mm/h step
- Setup with two exp. plots, 8x2 m and 1x1 m
- 45 % oversprays, CU index cca 80 %, 15 % var.
- Vegetation / cultivated fallow

For more details look up our poster X1.125

CTU in Prague

Dept. of Irrigation, Drainage and Landscape Engineering

ludek.strouhal@fsv.cvut.cz

4/7

Experimental tools and setup

HOW DO WE DO IT?

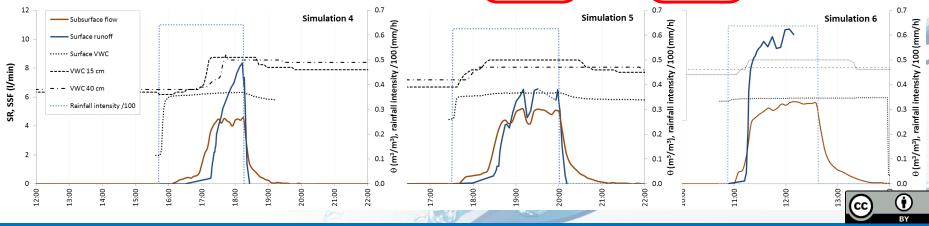
- Subsurface runoff collected with a 0.5 m deep drain and a tipping bucket
- Soil moisture monitoring in three depths using Theta ML2x and TMS-3 "Lolly" probes
- Surface runoff manual samples and automatic continuous measurement with HS-flume and ultrasonic sensor

Other measurements:

- Sediment particle size distribution
- Overland flow velocity
- \circ LAI / Canopy cover

CTU in Prague

For more details look up our poster X1.125



5/7

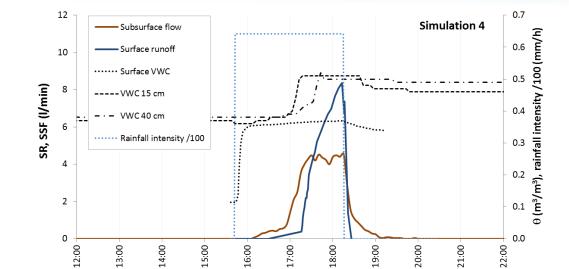
Experimantal results

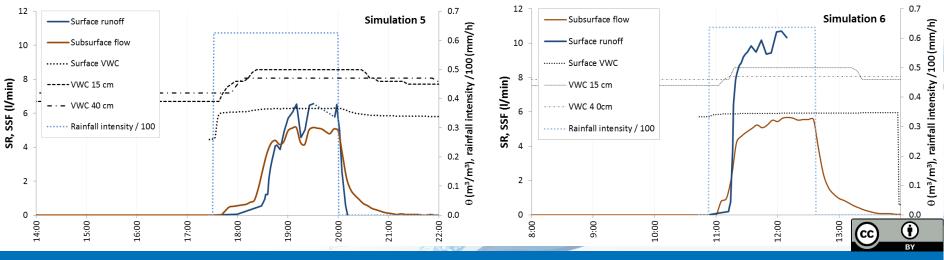
Sim. #	Canopy cover	Rainfall intensity (mm/h)	Duration (min)	Subsurface flow		Surface runoff	
				Start (min)	Q _{max} (I/min)	Start (min)	Q _{max} (I/min)
1	seedbed cond.	23	78	19	1,16		-
2	barley 30 cm	40	71	20	0,96		-
3	barley 80 cm	63	58	20	6,2	38	6,0
4	barley ripening	64	154	30	4,4	90	8,4
5	barley ripe	63	150	15	5,1	57	6,5
6	stubble	64	105	10	5,6	19	10,7
7A/B	rapeseed ripe	77/162	62/18	27/0	2,2/11,6	/1	/8,2
8A/B/C	rapeseed stubble	88	39/24/51	9/1/0	2/5,6/ 5,0	/14/5	/8,0/13,5

WHAT DID WE FIND OUT?

CTU in Prague

Dept. of Irrigation, Drainage and Landscape Engineering


ludek.strouhal@fsv.cvut.cz



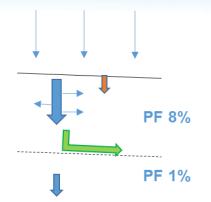
5/7

Experimantal results

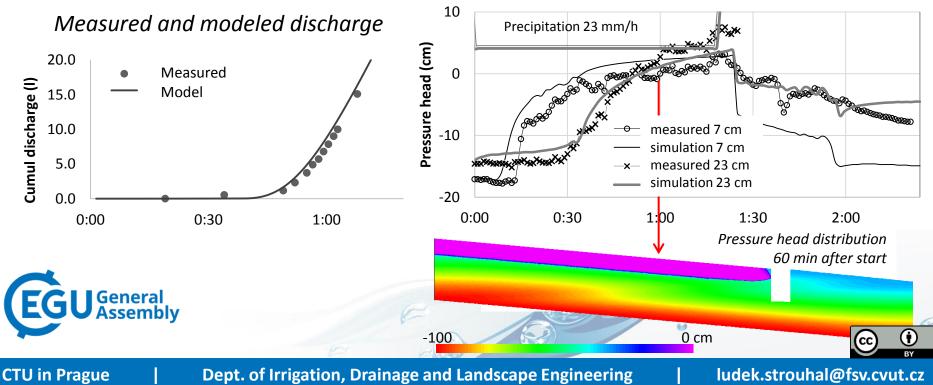
WHAT DID WE FIND OUT?

CTU in Prague

Dept. of Irrigation, Drainage and Landscape Engineering


ludek.strouhal@fsv.cvut.cz

Numeric simulations



6/7

DO THE OBSERVATIONS FIT THE THEORY?

- Dual permeability model (matrix and preferential flow domains)
- Two Richards eq. coupled with transfer term
- Approaches to simulate subsurface runoff:
 - 1D infiltration S1D + 1D subsurface lateral outflow HYPO kinematic wave (Vogel et al., 2010, Dusek et al, 2012)
 - 2D model S2D (Vogel et al.,1993)

Conclusions and outlook

7/7

WHAT DID WE LEARN ABOUT OUR STUDY SITE?

- Shallow subsurface runoff precedes the surface runoff independently on initial soil saturation or crop cover
- o Conceptual model is in an agreement with the measured data from the experiments
- Preferential pathways are dominant when the soil profile is near to saturation
- More numeric simulations need to be done in order to identify key hydrologic parameters and their variability throughout the season
- Links between plot and catchment scale behaviour need to be analysed and ways of implementig the concept into the catchment models will be sought

CTU in Prague

ŧ

Thanks for your attention!

CTU in Prague

Dept. of Irrigation, Drainage and Landscape Engineering

ludek.strouhal@fsv.cvut.cz

 (\mathbf{i})