Improvement of process identification and discharge measurement by the combination of different sensors

A. Schimmel and J. Hübl
Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Overview

Monitoring site Lattenbach

Debris flow 09.08.15
Debris flow 10.08.15
Debris flow 16.08.15
Warning System AMM-Detection
Improvement of process identification and discharge measurement by the combination of different sensors
A. Schimmel and J. Hübl
Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Monitoring site Lattenbach

Lattenbach:
Grins, Tyrol; Catchment area 5.3 km²
Debris flow monitoring since 2004
Instrumentation:
ultrasonic sensors, weighing precipitation gauge, seismometer, video cameras, 2D laser scanner, debris flow radar, infrasonic sensors, geophones,...
Monitoring site Lattenbach

New installations on the test site:

Debris flow Radar
- surface velocity of a debris flow

2D-Laser Scanner
- cross sectional wetted area

AMM-Detection
- automatic detection of debris flows based on infrasound and seismic data
Debris flow Radar

High frequency pulse Doppler Radar

- Max. measurement distance 2,5 km
- Range gate length 15-250 m
- Velocities up to 300 km/h
- Alarming trigger in case of an event
Improvement of process identification and discharge measurement by the combination of different sensors
A. Schimmel and J. Hübl
Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

2D-Laser Scanner

SICK Laser-Scanner LMS511

- Resolution: 0.25°
- Sample frequency: 5 Hz
- Data acquisition and configuration: Raspberry PI 1 Model B
Automatic detection based on infrasound and seismic data

- System which detects alpin mass movements in real time directly at the sensor site and comes along with only one seismic sensor, one infrasound sensor and a microcontroller
- Warning system for debris flows / debris floods and snow avalanches
- Combination of seismic and infrasound sensors to get advantages of both technologies
- Identify magnitude and process type based on the seismic and infrasound signals
Debris Flow on 09.08.2015

Overall volume: 16000 m³
Max. discharge: 64 m³/s
Av. discharge: 4.5 m³/s
Max. velocity: 4.3 m/s
Average velocity: 1.9 m/s
Debris Flow on 09.08.2015

Discharge and total load of the debris flow on 09.08.2015
Improvement of process identification and discharge measurement by the combination of different sensors
A. Schimmel and J. Hübl
Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Debris Flow on 09.08.2015

2D-Scan of the debris flow on 09.08.2015
Debris Flow on 09.08.2015

AMM-Detection:

Early detection: 53 s

Max. infrasound amp.: 776 mPa
Max. seismic amp.: 113 µm/s
Duration of event: 2671 s
Peak-frequency band: 5-15 Hz

(a) Infrasound time series; (b) Seismogram; (c) Average amplitude of the frequency bands of the infrasound signal; (d) Average amplitude of the frequency band of the seismic signal; (e) Running spectrum of the infrasound signal; (f) Running spectrum of the seismic signal; Lines: time of first detection based on infrasound and seismic data. Signals are represented with a common base of time.
Debris Flow on 10.08.2015

Overall volume: 26800 m³
Max. discharge: 53 m³/s
Av. discharge: 7.4 m³/s
Max. velocity: 4.4 m/s
Average velocity: 2 m/s
Debris Flow on 10.08.2015

Discharge and total load of the debris flow on 10.08.2015
Debris Flow on 10.08.2015

AMM-Detection:

Early detection: -14 s

Max. infrasound amp.: 859 mPa
Max. seismic amp.: 134 µm/s
Duration of event: 4561 s
Peak-frequency band: 5-15 Hz

(a) Infrasound time series; (b) Seismogram; (c) Average amplitude of the frequency bands of the infrasound signal; (d) Average amplitude of the frequency band of the seismic signal; (e) Running spectrum of the infrasound signal; (f) Running spectrum of the seismic signal; Lines: time of first detection based on infrasound and seismic data. Signals are represented with a common base of time.
Debris Flow on 09.08. / 10.08.2015

Precipitation and discharge of the debris flows on 09.08. and 10.08.2015

![Graph showing precipitation and discharge over time]
Debris Flow on 16.08.2015

Overall volume: 10000 m³
Max. discharge: 16 m³/s
Av. discharge: 2,8 m³/s
Max. velocity: 2,6 m/s
Average velocity: 1,6 m/s
Debris Flow on 16.08.2015

Discharge and total load of the debris flow on 16.08.2015
Debris Flow on 16.08.2015

AMM-Detection:

Early detection: 12 s

Max. infrasound amp.: 561 mPa
Max. seismic amp.: 75 µm/s
Duration of event: 2099 s
Peak-frequency band: 5-15 Hz

(a) Infrasound time series; (b) Seismogram; (c) Average amplitude of the frequency bands of the infrasound signal; (d) Average amplitude of the frequency band of the seismic signal; (e) Running spectrum of the infrasound signal; (f) Running spectrum of the seismic signal; Lines: time of first detection based on infrasound and seismic data. Signals are represented with a common base of time.
Debris Flow on 16.08.2015

Precipitation and discharge of the debris flows on 16.08.2015

Precipitation

Discharge
Improvement of process identification and discharge measurement by the combination of different sensors
A. Schimmel and J. Hübl
Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

AMM-Detection

“Automatic Detection and Identification of Alpine Mass Movements based on Infrasound and Seismic Signals”
Infrasound and seismic waves of debris flows

Infrasound:
- Signal source is the collision of stones (vibrations)
- Sound pressure between 0.1-10 Pa
- Peak frequencies
 - 5-15 Hz (debris flow)
 - 15-30 Hz (debris flood)

Seismic waves:
- Signal source is the collision of stones with the channel
- Amplitudes between 5-500 µm/s
- Peak frequencies 10-30 Hz

(Kogelnig 2012)
Improvement of process identification and discharge measurement by the combination of different sensors

A. Schimmel and J. Hübl
Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Used components

- **Microcontroller:** Luminary LM3S8962
 - 50 MHz ARM-Cortex-M3 Processor
 - 4 ADC-Channels – 100 Samples/s

- **Infraschall sensor:** Chaparral Model 24
 - Sensitivity 2 V/Pa, frequency range 0.1 Hz – 50 Hz

 or **MK-224**
 - Sensitivity 50 mV/Pa, frequency range 3 Hz – 200 Hz

 or **Electret Condenser Micophone** KECG2742WBL-25-L
 - Sensitivity -42±3 dB, frequency range -20-20000 Hz

- **Seismic sensor:** Geophone Sercel SG-5
 - Sensitivity 80 Vs/m, Natural frequency 5 Hz
Functions of the warning system

Display:
Display of current values, system settings and parameters detection-alg.

SD-Card:
Max. 16 GB memory card
Recording time 148 days (3560 hours-files)
Log-Files (3 types)

Network:
100 Mbit Ethernet
Web server (remote control)
Time from time server
E-Mail alert

Input:
- Infrasound signal
- Seismic signal
- Level (ultrasonic or radar gauge)

Power supply (12 V, consumption <1.5W!; supervision possible)

Signal adaptation:
Filtering by RC-network
Adapting the input signals with an inverting amplifier circuit

Output:
Alarm 3 V (relay control)
2 Alarm levels (magnitude)
Modem control (timed switch on/off)
Camera - triggering on alarm
Signal processing

- Removing the DC-component by RC-high-pass with a cutoff frequency of ~1 Hz
- Adaptation of the signal to ADC input with an inverting amplifier circuit → Infrasound: 400 mV/Pa; Seismic: 8 mV/µm/s
- Sampling at 100 samples/s, transforming into physical dimensions (Anti-aliasing: 32x Hardware oversampling)
- Calculation of the frequency spectrum using Fast Fourier Transformation per second, 100 FFT samples (FFT Bluestein algorithm)
- Detection-Algorithm
Current Detection-Algorithm

Infrasound Signal:

Amplitude-Criteria - Level 1 / Level 2:
Amplitude of the debris flow / debris flood frequency band exceeds a limit for a certain time-period

\[avAmp_{DFlow} \geq AmpLimit_{L1} \quad \text{or} \quad avAmp_{DFlood} \geq AmpLimit_{L1} \]

\[avAmp_{DFlow} \geq AmpLimit_{L2} \quad \text{or} \quad avAmp_{DFlood} \geq AmpLimit_{L2} \]

Distribution-Criteria:
Amplitude of the debris flow / debris flood frequency band is greater than the amplitudes of the frequency bands above and below

\[avAmp_{DFlow} > \frac{avAmp_{high}}{avAmp_{low}} \quad \text{or} \quad avAmp_{DFlood} > \frac{avAmp_{high}}{avAmp_{low}} \]

Variance-Criteria:
Variance of the amplitudes below a certain value (to eliminate artificial noise)

\[AmpVar_{DFlow} \leq VarLimit \quad \text{or} \quad AmpVar_{DFlood} \leq VarLimit \]
Current Detection-Algorithm

Seismic Signals:

Amplitude-Criteria - Level 1 / Level 2:
Amplitude of the debris flow / debris flood frequency band exceeds a limit for a certain time-period

\[
\text{avAmp}_{DFlow/DFlood} \geq \text{AmpLimitL2} \\
\text{avAmp}_{DFlow/DFlood} \geq \text{AmpLimitL1}
\]

Variance-Criteria:
Variance of the amplitudes below a certain value (eliminate artificial noise)

\[
\text{AmpVar}_{DFlow/DFlood} \leq \text{VarLimit}
\]

Detection:
All criteria for both signals (seismic and infrasound) are met.
Current Detection-Algorithm

Scheme of the event detection - debris flow infrasound signal:
Current Detection-Algorithm

Current parameter values:

<table>
<thead>
<tr>
<th></th>
<th>Infrasound signal</th>
<th>Seismic signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency band 1</td>
<td>$\text{FB}{1\text{low}} - \text{FB}{1\text{high}}$</td>
<td>3 to 5 Hz</td>
</tr>
<tr>
<td>Frequency band 2 - debris flow</td>
<td>$\text{FB}{2\text{low}} - \text{FB}{2\text{high}}$</td>
<td>5 to 15 Hz</td>
</tr>
<tr>
<td>Frequency band 3 – debris flood</td>
<td>$\text{FB}{3\text{low}} - \text{FB}{3\text{high}}$</td>
<td>15 to 35 Hz</td>
</tr>
<tr>
<td>Frequency band 4</td>
<td>$\text{FB}{4\text{low}} - \text{FB}{4\text{high}}$</td>
<td>35 to 50 Hz</td>
</tr>
<tr>
<td>Limit for Amplitudes - Level 1</td>
<td>AmpLimitL1</td>
<td>10 mPa</td>
</tr>
<tr>
<td>Limit for Amplitudes - Level 2</td>
<td>AmpLimitL2</td>
<td>30 mPa</td>
</tr>
<tr>
<td>Limit for Variance</td>
<td>VarLimit</td>
<td>0,6</td>
</tr>
<tr>
<td>Time span for detection</td>
<td>T_{det}</td>
<td>12 s</td>
</tr>
</tbody>
</table>
Test sites since 2013

- **Debris flow** (Illgraben, Marderello since 2015)
- **Avalanches**
Improvement of process identification and discharge measurement by the combination of different sensors

A. Schimmel and J. Hübl

Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Example for detection

Debris flow on 1.9.2008
Lattenbach (Tyrol)
Early detection: 111 s
Example for detection

Debris flood on 9.7.2013
Dristenau (Tyrol)
Early detection: -4 s
Example for detection

Comparison infrasound spectrum
Debris flow Lattenbach – Debris flood Dristenau
Example for detection

Debris flood on 28.7.2009
Illgraben (Wallis, Switzerland)
Early detection: 89 s
Example for detection

Debris flood on 31.7.2014
Farstrinne (Tyrol)
Early detection: 99s
Improvement of process identification and discharge measurement by the combination of different sensors
A. Schimmel and J. Hübl
Institute of Mountain Risk Engineering, University of Natural Resources and Life Sciences, Vienna

Example for detection

Debris flood on 9.8.2015
Marderello (Italy)
Example for artificial interfering noise

30.6.2014
Farstrinne (Tyrol)
Aeroplane
Results - Test sites

Debris flow / debris floods, season 2013 – Number events / detections

<table>
<thead>
<tr>
<th>Test Site</th>
<th>Number events</th>
<th>Detections</th>
<th>False alarms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>very small <100 mPa</td>
<td>small >100 mPa <400 mPa</td>
<td>medium >400 mPa</td>
</tr>
<tr>
<td>Lattenbach</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Warschenbach</td>
<td>8</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Farstrinne</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dristenau</td>
<td>18</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Schüsserbach</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Overall:</td>
<td>50 %</td>
<td>70 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>
Results - Test sites

Debris flow / debris floods, season 2014 – Number events / detections

<table>
<thead>
<tr>
<th>Test Site</th>
<th>Number events</th>
<th>Detections</th>
<th>False alarms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>very small <100 mPa</td>
<td>small >100 mPa <400 mPa</td>
<td>medium >400 mPa</td>
</tr>
<tr>
<td>Lattenbach</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Farstrinne</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Dristenau</td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Schüsserbach</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Overall:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Further points of research

- Estimation of event size (magnitude, deposit) *
- Determination of process-type (viscosity) *
- Determination of the duration of the event
- Localization of the event (sensor array)

*) ÖAW ESS-Project:
„Identification of sediment-related disaster based on seismic and acoustic signals“
Debris flow - Test sites