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1 Abstract

The Phase Tensor marked a breakthrough in understanding and
analysis of electric galvanic distortion. It can be used for (distor-
tion free) dimensionality analysis, distortion analysis and subsurface
model inversion. However, it does not store impedance amplitude
information, therefore the impedance corrected by distortion anal-
ysis may yield superior results. We formulate a Magnetotelluric
impedance tensor decomposition into Phase and Amplitude Ten-
sor. The new Amplitude Tensor is shown to be complementary
and independent of the Phase Tensor and to contain galvanic and
inductive information, which the latter is physically related to the
Phase Tensor. This physical similarity is used to approximate the
galvanic amplitude for a general subsurface, leading to: (i) the gal-
vanic response may have a changing impact on the impedance over
a period range and (ii) only the galvanic response of the lowest pe-
riod should be termed galvanic distortion. The galvanic amplitude
approximation offers a new perspective on galvanic distortion, which
breaks with the general belief of the need to assume 1D/2D regional
structure. The Amplitude Tensor is illustrated and compared to the
Phase Tensor on real and synthetic examples.

2 Introduction and Motivation

Galvanic electric distortion is a long standing problem for the magne-
totelluric (MT) method [Berdichevsky and Dmitriev, 1976, Jiracek,
1990, Jones, 2011]. Two main remedies have emerged: (i) mod-
elling near surface inhomogeneities or their effects, and accounting
for them [Miensopust, 2010, Avdeeva et al., 2015], and (ii) analytic
solutions based on structural assumptions (2D) on the impedance
tensor [Groom and Bailey, 1989, McNeice and Jones, 2001, Jones,
2012]. Modelling of distortion effect has grown popular since Cald-
well et al. [2004] introduced the distortion free Phase Tensor and
Bibby et al. [2005] showed that previous solutions on distortion
analysis contain implicit assumptions on the distortion matrix and
not only the explicit structural impedance constraint (be it 1D or
2D) concluding that distortion analysis cannot be uniquely resolved
without assumptions on the distortion matrix itself.
Given the Phase Tensor [Caldwell et al., 2004], we propose a com-
plementary Amplitude Tensor to represent the impedance. Both
tensors are independent and exhibit significant structural similarity
corresponding to the present subsurface, even if 3D. Amplitude Ten-
sor properties are described and its similarity to the Phase Tensor
is demonstrated in terms of regional subsurface strike angle, di-
mensionality and anisotropy. Since the Amplitude Tensor combines
galvanic distortion and regional amplitude, we postulate that the
latter can be approximated by Phase Tensor properties, allowing to
estimate distortion up to a constant without regional dimensionality
assumptions or explicit constraints on the distortion matrix.

3 Amplitude Phase Decomposition

Let Z ∈ C
n×n be represented in analogy to the polar form of

complex numbers z = ̺ · exp (iϕ)with matrices (P , Φ, C , S

and E ) analogue to ̺, ϕ, cosϕ, sinϕ and exp (iϕ):

Z = PE = P(C + iS). (1)

In particular, the sum of squares of the amplitude independent terms
shall be unity in analogy to the trigonometric identity:

C · CT + S · ST = I . (2)

Then, (1), (2), Z = X + iY and Φ = X−1Y yield

C =
(

I + ΦΦT
)−1

2
, S =

(

I + ΦΦT
)−1

2
·Φ, E = C + iS.

Hence, a unique, real-valued Amplitude Tensor can be defined as

P = Z · E−1. (3)

Then, we follow the matrix parameterization by Booker [2014]:

M = R(−θM) · diag (m1,m2) · R(ψM) · R(θM) (4)

for the strike θM , the singular values m1/2 and the skew ψM .

4 Example of Tensor Parameter

As an example, we chose site A09 of the Dublin Secret Model
One [DSM1, Miensopust et al., 2013], because the data are: (i)
noise-free, (ii) distortion-free and (iii) truly 3D with two differently
oriented 2D structures at different depths. Visual inspection of the
impedance data (panels 1a and 1b) shows equal off-diagonal am-
plitude and very small diagonal elements for the first three periods.
After the fourth period off-diagonal elements differ and main diag-
onal elements begin to be significant after the sixth period (around
10 s), translating into the observation that the data is roughly
1D for the first three periods, roughly 2D till the sixth and in-
creasingly 3D thereafter. Examination of the phase tensor skew
(panel 1c) the data is seen as 3D after the eighth period (consider-
ing a maximum skew of ±6◦ as suggested by Booker [2014]) and
return to lower dimensionality (presumably 2D) at the twelfth pe-
riod (≈ 500 s). However, further examination of the Phase Tensor
strike angle (panel 1d) reveals that any apparent two-dimensionality
would change orientation and thus, 2D should not be assumed if the
near surface 2D data and deep 2D data are to be interpreted (in-
verted) jointly. Therefore, the given example ranges from 1D to 3D,
including an orientation change of a 2D structure which in fact is
the cause of the 3D effect.

a: Period-scaled real impedance.

1D 2D 3D 2D

b: Period-scaled imaginary part.

1D 2D 3D

2D

c: Normalised skews.

1D 2D 3D 2D

d: Strike angles.

1D 2D 3D 2D

e: Amplitude Tensor singular values.

1D

2D 3D 2D

f: Phase Tensor singular values.

1D 2D 3D 2D

g: Relative anisotropy.

1D 2D 3D 2D

h: Averages of relative anisotropy.

1D 2D 3D 2D

Figure 1: Impedance data of site A09 of the DSM1 [Miensopust et al., 2013]
is decomposed in Phase and Amplitude Tensor skew, strike and singular values.
Note that the amplitude skew is normalised in order to account for diagonal versus
off-diagonal nature of phase and Amplitude Tensor (φnorm

P
= 90◦ − φP).

5 Relative Logarithmic Anisotropy

Consider the following two anisotropy definitions:

φa =
1

2
(tan−1(φ1) − tan−1(φ2)), (5)

ρa =
1

2
(ln(ρ1) − ln(ρ2)). (6)

In order to compare Amplitude and Phase, it is imperative that the
scales of both are comparable (cp. Figure 1g and h). Since the
real and imaginary parts of the logarithm of complex numbers z =
ρ exp(iφ) relate to the logarithm of the amplitude ρ and phase
φ respectively, we argue that these measures are as comparable as
real and imaginary parts of the logarithm of complex numbers:

ln z = ln(ρ exp(iφ)) = ln ρ+ iφ. (7)

6 Dublin 3D Modelling and Inversion Workshop Synthetic Models

The Secret Model 1 (2008) in Figure 2a features
a 100Ωm background with a (1Ωm) body
starting at North-East, then spiraling down to-
wards, at first West, then South, East and finally
North (to the left). At highest periods, only the
phase senses the shallowest part in North-East.
At (32 s), the lag between amplitude and phase
becomes clear and the phase begins to lose sensi-
tivity towards smaller scales. Phase dimensional-
ity peak (skew angle) is reached at around 560 s
revealing the complexity of the model. When
phase sensitivity has diminished, the amplitude
reluctantly adapts to deeper structure and con-
tinues to recognise dominant shallow structure of

the integrated model and therewith illustrating
the present galvanic effect in the amplitude.
Figure 2b displays a selection of periods from a
complex, large scale model that will be discussed
at the workshop in June 2016 and specifics are
not yet public. The model represents a ocean-
continent setting inspired by the US West coast,
includes bathymetry and topography and is noted
as showing strong ocean effects. At 40 s, ampli-
tude and phase note severe coastal effects and nu-
merous shallow anomalies but at 40000 s, almost
all phase information is aligned with the coastline,
whereas the (galvanic) amplitude shows the dom-
inant features of the model.

a: Dublin 3D Modelling and Inversion Workshop Secret Model 1 (2008)

b: Dublin 3D Modelling and Inversion Workshop Secret Model 3 (2016).

Figure 2: Phase (upper) and Amplitude (lower) Tensor are illustrated by determinant (degrees and log. apparent resistivity
in color), qualitative skew (circle fill - black/grey/white (3D/quasi 2D/2D)), anisotropy and strike (ellipse).

7 Estimating Inductive and Galvanic Amplitude From the Phase Tensor

Consider a 2D impedance tensor in regional strike
coordinates, with the two principal components:

Z1/2 = exp(ln ρ1/2 ± i tan−1 φ1/2) (8)

with the singular values ρ1, ρ2 and φ1, φ2 of
Amplitude and Phase Tensor, respectively. Let

ρ = exp

(

1

2
(ln ρ1 + ln ρ2)

)

(9)

φ =

(

1

2
(tan−1φ1 + tan−1 φ2)

)

, (10)

then we obtain:

Z1/2 = exp(ln ρ± ρa) ± i(φ± φa)))

where φa and ρa are the phase and logarithmic
amplitude anisotropy. For real data, both, φ and
φa are generally unaffected by electric field dis-
tortion, whereas ρ can include galvanic shift (con-
stant multiplicative factor) and ρa may include
galvanic anisotropy. Assuming that the inductive

response of the subsurface has a similar effect on
Phase and Amplitude, we can estimate the induc-
tive amplitude singular values by

ρind1/2 = exp(ln ρ∓ φa) (11)

and the galvanic amplitude singular values by

ρ
gal
1 = exp(±(ρa + φa)) (12)

In a general 3D situation, we can follow the
same logic and additionally assume similar geo-
logic strike (and subsurface dimensionality) for
inductive amplitude and phase. Therewith, by
substituting phase strike (skew) as inductive am-
plitude strike (skew) and the singular values as
in the 2D example, we obtain an estimate for
the galvanic Amplitude Tensor which represents
purely galvanic subsurface information:

P
gal = P ·

(

P
ind

)−1
. (13)

8 Real Data Example: SAMTEX

Here we present how Amplitude Tensor properties could be used to obtain qualitative
real data interpretations. Figure 3 shows a parameter map of the SAMTEX dataset
[Evans et al., 2011]. Logarithmic apparent resistivities (colored ellipses) correspond
to Kaapvaal and Zimbabwe Archaean terranes and Ghanzi-Chobe belt with higher
values (cooler colors), and lower values (warmer colors) for some of the Phanerozoic
terranes, like the Rehoboth terrane, already pointed out by Evans et al. [2011]. In
particular the northern Rehoboth terrane border and the data collected in Namibia,
on the Damara and Ghanzi-Chobe belts, are marked by high resistivities, which
correlate with 2D inversion results from Muller et al. [2009].

Figure 3: Amplitude Tensor map of the SAMTEX experiment illustrated by determinant (logarithmic
apparent resistivity in color), skew, anisotropy and strike angle (as above). On the right, there is a
zoom of a few sites located in the area under the rectangle on the left plot.

9 Conclusion

We newly define an Amplitude Tensor and demonstrate its properties and comple-
mentarity to the Phase Tensor (i.e. for modeling or mapping). The physical relation
between Phase and inductive Amplitude Tensor leads to a galvanic amplitude ap-
proximation with the following qualitative interpretation of general 3D distortion: (i)
the galvanic response may have a changing impact on the impedance over a period
range and (ii) only the galvanic response of the lowest period should be termed
galvanic distortion.
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