Analysis of stratospheric NO₂ trends above Kiruna using ground-based zenith sky DOAS observations

Myojeong Gu¹, Carl-Fredrik Enell², François Hendrick³, Janis Pukite¹, Michel Van Roozendael³, Ulrich Platt⁴, Uwe Raffalski⁵, and Thomas Wagner¹

(1) Max-Planck Institute for Chemistry, Mainz, Germany, myojeong.gu@mpic.de,(2) EISCAT Scientific Association, Kiruna, Sweden, (3) Institut d'Aéronomie Spatiale de Belgique (IASB-BIRA), Brussels, Belgium (4)Institute for Environmental Physics, University of Heidelberg, Heidelberg, Germany, (5) Swedish Institute of Space Physics, Kiruna, Sweden

Analysis of stratospheric NO₂ trends above Kiruna using ground-based zenith sky DOAS observations

PICO4.10 2-minute-madness

- 1. Stratospheric NO_2 influence the ozone chemistry. Destruction of ozone or acting as a buffer
- 2. Major source of stratospheric NOx $:N_2O$
 - Mostly coming from soil
 - Life time around 120 years, almost no reaction in Troposphere
 - Approximately, 90% of N_2O in stratosphere is destroyed by photolysis.
 - Previous studies show that due to rising N₂O emission, NO₂ increases and O₃ decreases.

Several studies show long term NO_2 trends, but those are focused on the middle-latitude and southern hemisphere. Here, we study long-term NO_2 trend for the northern hemisphere at high-latitude.

- 3. In this study, we use the ground-based zenith sky DOAS measurement at Kiruna (67°N), Sweden.
- 4. Trend analysis method: Modified linear regression methods (by Bodeker al., 1998 and modified by Hendrick et al., 2012).

Analysis of stratospheric NO₂ trends above Kiruna using ground-based zenith sky DOAS observations

7 × 10¹⁵ NO₂ VCDs [molec/cm²] Trend relative to year 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 **1997 – 2006** : -0.22±3.6 %/decade Year x 10¹⁵ **1997 – 2009** : -0.18±2.4 %/decade **1997 – 2015 : -0.05 ± 1.3 %/decade** 0.5 Residual - Negative trend -0.5 - Statistically not significant 2005 2000 2001 2002 2003 2004 2006 2007 2008 2010 2011 2012 2013 2014 2015 Year Measured monthly mean NO₂ Calculated NO₂ using the multiple linear regression model Linear trend

5. Results : Stratospheric NO₂ VCDs over Kiruna

CC

(i)

PICO4.10 2-minute-madness

Analysis of stratospheric NO₂ trends above Kiruna PICO4.10 using ground-based zenith sky DOAS observations 2-minute-madness

- The trend of stratospheric NO₂ over <u>Kiruna (1997 2009)</u> is slightly negative <u>(-0.18± 2.4%/decade</u>), but no significant. Here, this study is comparable with F. Hendrick et al. (2012) study.
 - F. Hendrick et al. (2012) shows the trend of stratospheric NO₂ VCDs (1990 2009) at Jungfraujoch (46.5°N) using SAOZ and FTIR measurements, $-3.7\pm1.1\%$ /decade and $-3.6\pm0.9\%$ /decade, respectively. \rightarrow Strong decreasing trends
 - What is the reason for this discrepancy? -Different site : Kiruna (67°N) and Jungfraujoch (45°N) -Different measurement covered period

Come and visit my PICO screen PICO4.10 between 14:00-15:00

Introduction: Chemistry

- 1. Stratospheric NO_2 influence the ozone chemistry.
 - -Middle and upper stratosphere (25 40 km): NO_x destruction of ozone

```
NO + O_3 \rightarrow NO_2 + O_2

NO_2 + O \rightarrow NO + O_2

NO_2 + hv \rightarrow NO + O [Crutzen, 1970]
```

-Below 25km: acting as a buffer against halogen-catalyzed O_3 loss through the formation of reservoir species (ClONO₂, BrONO₂).

 $CIO + NO_2 \rightarrow CIONO_2$ BrO + NO_2 \rightarrow BrONO_2

- 2. Major source of stratospheric NOx : N_2O
 - Mostly coming from soil
 - Life time around 120 years, almost no reaction in Troposphere
 - Approximately, 90% of N₂O in stratosphere is destroyed by photolysis.
 - Previous studies show that due to rising $\rm N_2O$ emission, $\rm NO_2$ increases and $\rm O_3$ decreases.

Several studies show long term NO_2 trends, but those are focused on the middle-latitude and southern hemisphere. Here, we study long-term NO_2 trend for the northern hemisphere at high-latitude.

 (\mathbf{i})

Introduction: Chemistry

 (\mathbf{i})

(cc)

[Lambert et al., 2002]

Diurnal cycle of reactive nitrogen compounds for different periods. In most cases (left), N_2O_5 is accumulated during night and photolised during day. During polar summer, photolysis of NO_2 determines the diurnal cycle of NO_2 .

Literature review

	Measurement period	Site	Instrument	Trend analysis
Liley et al. (2000)	1981 – 1991	New Zealand (45°S)	Ground-based zenith sky DOAS	+5% /decade
Dirksen et al. (2011)	1981 – 2010	New Zealand (45°S)	Ground-based zenith sky DOAS	+5% /decade
McLinden et al. (2001)	1981 – 1999		3D Chemical Transport model	+2.5%/decade
Gruzdev et al. (2009)	1983 – 2007	23 NDACC stations	FTIR and ground- based zenith sky DOAS	Mid latitude in SH: positive trend NH: negative trend
Cook & Roscoe (2009)	1990 – 2007	Antarctic	Ground-based zenith sky DOAS	1990 – 2000: +10%/decade 2000 – 2007: -20%/decade
F.Hendrick et al. (2012)	1990 – 2010	Jungfraujoch (46.5°N)	SAOZ, FTIR	-3.7± 1.1%/decade -3.6±0.9%/decade
	2000 – 2010	Harestua (60.2°N)	Ground-based UV/Vis spectrometer	-3.9±3.1%/decade

Literature review

	M	easurement period		Site		Instrument			Trend ana	lysis
Liley et al. (2000)	1	Table 1. Stations for NO ₂ observations and annual estimates of linear trends in column NO ₂ content.								
Dirksen et al. (2011)	1	Station	Latitude	Longitude	Organization responsible for observations	r Period of observations	Trend* (% Morning	per decade) Evening	Trend* (10 ¹³ cr Morning	n ⁻² per decade) Evening
McLinden et al. (2001)	1	 Ny-Alesund Thule Scoresbysund 	78.9° N 76.5° N 70.5° N	11.9° E 68.8° W 22.0° W	NILU DMI SA	1991, 1993–2003 1990–2004 1996–2007	-3.5 ± 6.7 -4.9 ± 6.8 4.7 ± 7.2 3.2 ± 7.1	-0.7 ± 7.1 -2.8 ± 6.3 2.8 ± 6.6 2.4 ± 6.4	-0.8 ± 1.6 -1.2 ± 1.6 1.5 ± 2.3 1.0 ± 2.3	-0.2 ± 1.9 -0.7 ± 1.7 1.0 ± 2.4 0.9 ± 2.4
Gruzdev et al. (2009)	1	4. Kiruna 5. Sodankyla 6. Zhigansk	67.8° N 67.4° N 66.8° N	20.4° E 26.6° E 123.4° E	NIWA SA SA	1991–2006 1995–2007 1992–2007	-0.3 ± 4.0 -3.1 ± 3.8 -4.6 ± 3.3 -4.2 ± 3.2 7.2 ± 5.4	-2.3 ± 3.0 -4.1 ± 2.9 0.5 ± 3.0 -2.9 ± 2.9 7.7 ± 5.1	$-0.1 \pm 1.2 \\ -1.0 \pm 1.2 \\ -1.4 \pm 1.0 \\ -1.3 \pm 1.0 \\ 2.0 \pm 1.5$	-0.9 ± 1.2 -1.7 ± 1.2 0.5 ± 1.9 -1.0 ± 1.0 2.6 ± 1.8
Cook & Roscoe (2009)	1	7. Harestua 8. Zvenigorod 9. Jungfraujoch	60.2° N 55.7° N 46.6° N	10.8° E 36.8° E 8.0° E	IASB IAP IASB	1994-2007 1990-2007 1990-2007	7.9 ± 4.6 1.7 ± 5.5 3.8 ± 5.2 -6.8 ± 3.3 -8.0 ± 3.6 -10 ± 2.8	9.1 ± 4.3 0.5 ± 4.2 2.2 ± 4.1 -6.7 ± 2.7 -7.4 ± 2.9 -12 ± 2.4	$\begin{array}{c} \textbf{2.2} \pm \textbf{1.3} \\ \textbf{0.4} \pm \textbf{1.4} \\ \textbf{1.0} \pm \textbf{1.3} \\ \textbf{-1.8} \pm \textbf{0.9} \\ \textbf{-2.1} \pm \textbf{1.0} \\ \textbf{-2.6} \pm \textbf{0.7} \end{array}$	$\begin{array}{c} \textbf{3.1} \pm \textbf{1.5} \\ \textbf{0.2} \pm \textbf{1.6} \\ \textbf{0.8} \pm \textbf{1.4} \\ \textbf{-2.6} \pm \textbf{1.1} \\ \textbf{-2.9} \pm \textbf{1.1} \\ \textbf{-4.6} \pm \textbf{0.9} \end{array}$
F.Hendrick et al. (2012)	1	(UV-visible) (infrared) 10. Moshiri 11. OHP 12. Issyk-Kul	44.4° N 43.9° N 42.6° N	142.3° E 5.7° E 77.0° E	IAG RCAST SA KNU	1990–2006 1991–2002 1992–2007 1983–2005	-9.9 ± 2.8 -1.5 ± 3.2 2.5 ± 2.1	-11 ± 2.4	-2.5 ± 0.8 -0.4 ± 1.1 0.81 ± 0.67	-4.2 ± 0.9 0.33 ± 0.78
	2	13. Mauna Loa	19.5° N	155.6° W	NIWA	1990–2005 1996–2006	2.7 ± 2.1 2.4 ± 2.9 -1.3 ± 4.2 2.2 ± 4.4	0.5 ± 1.4 2.4 ± 2.1 -1.8 ± 3.7 2.1 ± 4.0	0.88 ± 0.67 0.76 ± 0.94 -0.4 ± 1.1 0.6 ± 1.2	0.25 ± 0.76 1.3 ± 1.1 -0.7 ± 1.5 0.8 ± 1.6

Comparable data

Gruzdev et al. (2009): Kiruna (67.8°N), Sodankyla(67.4°N) F.Hendrick et al.(2012): Harestua (60.2°N)

Ground-based zenith sky DOAS

Geometry of zenith sky DOAS

Modified from (http://www.doas-bremen.de/maxdoas_instrument.htm)

Differential Optical Absorption Spectroscopy (DOAS) technique

: Remote sensing method to detect trace gases and aerosols in the atmosphere using measured spectra of scattered sunlight.

Each trace gas has the property to absorb particular wavelengths of the light.

Based on Lambert Beer's law, we investigate the absorption of different species from measured spectrum.

 (\mathbf{i})

CC

Ground-based zenith sky DOAS

Measurement site : Kiruna, Sweden: 67.84°N, 20.41°E
 Good place to study the polar stratospheric chemistry.
 Located in the arctic circle and is often situated under the polar vortex.
 Mountain wave induced Polar Stratospheric Clouds (PSCs) develop.

 Installation of Zenith Sky DOAS
 Measurement starts: December of 1996 and since then performed automatic measurements up to now.
 Wavelength range: 300nm to 400nm

- Fitting window : 356 392 nm
- Fitted species : NO₂, O4, O₃, Ring effect
- Daily based twilight reference spectra
- NO₂ vertical columns rerieved using Langley plot methods, integrating profile

NO₂ VCDs retreival

Trend analysis : Approaching method

Modified linear least squares regression model (developed by Bodeker al., 1998 and modified by Hendrick et al., 2012)

$$M(t) = A(N_A = 2) + B(N_B = 2) \times t + C(N_c = 2) \times QBO(t) + D(N_D = 0)$$

$$\times Solar flux(t) + E(N_E = 1) \times Aerosols(t) + \epsilon$$

- M(t) : Modeled NO₂ at decimal month(t) .
 - Including offset, linear trend, QBO, Solar activity, Seasonality, and stratospheric aerosol amount. \rightarrow Assumption: each parameter contributes to NO₂ variability and residual
- A E :Model coefficients calculated using a standard linear least squares regression fit to the measured NO₂ data.
 Calculated using Fourier series to fit seasonality.

$$= \left[C_0 + C_1 \sin\left(\frac{2\pi t}{12}\right) + C_2 \cos\left(\frac{2\pi t}{12}\right) + C_3 \sin\left(\frac{4\pi t}{12}\right) + C_4 \cos\left(\frac{4\pi t}{12}\right)\right] \times QBO(t)$$

(i)

Trend analysis : Predictors

- QBO : Quasi-Biennial-Oscillation (QBO), Singapore monthly mean zonal wind at 30hPa (FU-Belin, http://www.geo.fu-berlin.de/en/met/ag/strat/produkte/qbo)
- Solar activity : radio frequency 10.7cm Solar Flux data (The National Research Council of Canada, http://www.spaceweather.ca/solarflux/sx-3-en.php)
- Stratospheric aerosol optical thickness: GISS/NASA simulations data Altitude range(15 – 20 km) and Latitude (66.5°N) (GISS/NASA, http://data.giss.nasa.gov/modelforce/strataer/)

Dataset: Time series of measured stratospheric NO₂ VCDs

DOAS @ AM
DOAS @ PM
GOME
SCIAMACHY
GOME-2

Here, we can check the strong seasonal variations and Consistent measurements.

Iteration 1

 (\mathbf{i})

CC

Results: Trend analysis (AM)

NO₂ VCDs derived from Langley plot method

Iteration 2

 (\mathbf{i})

CC

Calculated NO₂ using the multiple linear regression model

Linear trend

Results: Trend analysis (PM)

NO₂ VCDs derived from Langley plot method

Trend relative to year 1997 1997 - 2006 : -0.16 \pm 2.7 %/decade 1997 - 2009 : -0.14 \pm 1.9 %/decade 1997 - 2015 : -0.04 \pm 1.0 %/decade

Iteration 3

 (\mathbf{i})

CC

Measured monthly mean NO₂

Calculated NO₂ using the multiple linear regression model

Linear trend

Results: Trend analysis (AM)

Linear trend

Trend relative to year 1997 $1997 - 2006 : -0.22 \pm 2.3$ %/decade $1997 - 2009 : -0.17 \pm 2.0$ %/decade $1997 - 2015 : -0.05 \pm 1.1$ %/decade

Iteration 4

 (\mathbf{i})

CC

Results: Trend analysis (PM)

\clubsuit NO₂ VCDs derived from integrating the profile

Trend relative to year 1997 1997 – 2006 : -0.28±2.9 %/decade 1997 – 2009 : -0.20±2.1 %/decade 1997 – 2015 : -0.07±1.0 %/decade

Iteration 5

 (\mathbf{i})

CC

Measured monthly mean NO₂

Calculated NO₂ using the multiple linear regression model

Linear trend

Summary

✤ NO₂ VCDs Trend relative to year 1997 [%/decade]

	Langley pl	ot method	Integrating profile		
Period	Morning	Evening	Morning	Evening	
1997 – 2006	-0.22±3.6	-0.16±2.7	-0.22±3.0	-0.28±2.9	
1997 – 2009	-0.18±2.4	-0.14±1.9	-0.17±2.0	-0.02±1.9	
1997 – 2015	-0.05±1.3	-0.04±1.0	-0.05±1.1	-0.07±1.1	
	photochemical reaction not included		Photochemistry included		

Here, I have NO₂ trend analysis results using two different NO₂ VCDs derived from Langley plot method and integrating profile. These two results show similar results to each other. Kiruna measurements show negative trends over 1997 – 2006, 1997 – 2009, and 1997 – 2015. However, those trend values are statistically not significant within the 95% confidence. (p-value: 0.87 - 0.92).

And it shows strong seasonality (p-value:0.057). However, QBO(p-value:0.952), Solar activity (p-value:0.922) and AOD (p-value:0.972) do not significantly contribute to stratospheric NO_2 trend.

 $(\mathbf{\hat{I}})$

Summary

The trend of stratospheric NO₂ over <u>Kiruna (1997 – 2009)</u> shows slightly negative <u>(-0.18 ± 2.4%/decade</u>), but no significant. Here, this study is comparable with F. Hendrick et al. (2012) study.

F. Hendrick et al. (2012) shows the trend of stratospheric NO₂ VCDs (1990 – 2009) at <u>Jungfraujoch (46.5°N)</u> using <u>SAOZ and FTIR</u> measurements, <u>-3.7±1.1%/decade</u> and <u>-3.6±0.9%/decade</u>, respectively. \rightarrow Strong decreasing trends

What is the reason for this discrepancy?

- Different site : Kiruna (67°N) and Jungfraujoch (45°N)
- Different measurement covered period

Acknowledgement

- Satellite nadir (GOME, SCIAMACHY and GOME2) stratospheric VCDs have been retrieved with scientific product created at the IUP Bremen.
- QBO : Quasi-Biennial-Oscillation (QBO), Singapore monthly mean zonal wind at 30hPa (FU-Belin, http://www.geo.fu-berlin.de/en/met/ag/strat/produkte/qbo)
- Solar activity : radio frequency 10.7cm Solar Flux data
 - (The National Research Council of Canada, http://www.spaceweather.ca/solarflux/sx-3-en.php)
- Stratospheric aerosol optical thickness: GISS/NASA simulations data, altitude range(15 20 km) and Latitude (66.5°N), (GISS/NASA, http://data.giss.nasa.gov/modelforce/strataer/)
- F.Hendrick et al., ACP (2012)
 - : Analysis of stratospheric NO_2 trends above Jungfraujoch using ground-based UV-visible, FTIR, and satellite nadir observations
- G.E.Bodeker et al., JGR (1998)
 - : Trends and variability in vertical ozone and temperature profiles measured by ozon sondes at Lauder, New Zealand

We would like to thank François Hendrick for consistent help and advice on the NO₂ profile algorithm and Caroline Fayt, Udo Frieß, and Mega Octaviani for advice to analysis.

