

Universität Trier Dept. of Physical Geography

The SfM-monitored rill experiment, a tool to detect decisive processes?

Some cogitations by:

Alexander-André Remke, Stefan Wirtz, Christine Brings,

Oliver Gronz, Manuel Seeger and Johannes B. Ries

Facts:

- Rill Erosion is one of the more effective types of erosion
- Experiments are often conducted in laboratories
- Processes of Rill Erosion are poorly understood

- Approach: In situ-experiments
- Until ~2008 gap between Rainfall-Simulation and Gully-monitoring

Gap filled thanks to RiFlE (Rill Flushing Experiment)

How to: Flush a rill twice for four minutes (250 L/min.)

What is measured?

- Slope
- Aspect
- Cross-Sections
- Water Level
- Flow Velocity
- Water Quantity
- Sediment Concentration

What can be calculated?

- Transport Rate, Transport
- Capacity
- Detachment Rate, Detachment
- Capacity
- Wetted Perimeter
- Hydraulic Radius
- Shear stress
- Unit length
- Shear force
- Stream power (diff.)
- Reynoldsnumber
- Froudenumber

. .

BUT: Real material loss often (75%) exceeds calculated loss

Transport Rate > Transport Capacity (calc.)

- Sediment Concentration is seldom constant or predictable
- Occurrence of "mysterious" peaks

What is not measured? Inside-topography!

Key question:

How does insidetopography influence RiFlE-Results?

The SfM-monitored rill experiment, a tool to detect decisive processes?

Results are influenced by:

- Side Wall Failure (SWF)
- Plunge-pool dynamics
- Incision

If Results are influenced by Side Wall Failure (SWF), Plunge-pool dynamics and Incision, then:

Problem: How to detect SWF, plunge-pool-dynamics and Incision?

If Results are influenced by Side Wall Failure (SWF), Plunge-pool dynamics and Incision, then:

Problem: How to detect SWF, plunge-pool dynamics and Incision?

Solution: Microtopography must be made measurable

If Results are influenced by Side Wall Failure (SWF), Plunge-pool dynamics and Incision, then:

Problem: How to detect SWF, plunge-pool dynamics and Incision?

Solution: Microtopography must be made measurable

Thanks to Structure-from-Motion (SfM), microtopography can be "scanned"

Requirements on SfM-serviceable Photos:

- ideal Crop & suitable Scale (focal length)
- correct Exposure (shutter speed)
- high Contrast (shutter speed)
- sufficient Sharpness (shutter speed)
- enclosing Depth of Field (shutter speed & aperture)
- minimal Blur (suspension / mounting)
- hemispherical exposure positions

Canon, 2016

Requirement on overall accuracy:

Orientation to size of target = $mm \leftarrow [x] \rightarrow cm$

"The better the pictures, the better the 3-D-model."

→ static 5-Camera-array, the "Penta-GNAG"

German for GeländeNahAbtastGerät = close-range terrain scanning device

The SfM-monitored rill experiment, a tool to detect decisive processes?

Why should one use a fixed array?

Advantages:

- + high accuracy (low shutter speed)
- + low cumputation time due to systematization (Identification of stereo-pairs)
- + (nearly) no data gaps thanks to crisp-sharp pictures

Disadvantages:

- elaborate handling (~1 hr for 20 m rill)
- demands for storage- / transport space

Picture Orientation Matrix

	Cam 1			
	Pic 1,1			
Row 2	Pic 1,2	Pic 2,2	Pic 3,2	Pic 4,2
Row 3	Pic 1,3	Pic 2,3	Pic 3,3	Pic 4,3
Row 4	Pic 1,4	Pic 2,4	Pic 3,4	Pic 4,4

Why should one use a more-than-two-cameras-of-the-same-type-array?

Advantages:

- + no shift of positions
- + same lighting conditions
- + better visibility of side wall (45°- cameras)
- + more than usual stereo-2,5-D (overhang-detection)
- + no furling of long, narrow objects (nautilus effect purged by 90°- camera)
- + elimination of errors implanted through use of different camera models

Disadvantages:

- costs
- precarious electronical synchronisation (intrusion in camera body necessary)

Post-processing reduces Resolution

The SfM-monitored rill experiment, a tool to detect decisive processes?

Results

The SfM-monitored rill experiment, a tool to detect decisive processes?

Snippet of a 3-D-model

The SfM-monitored rill experiment, a tool to detect decisive processes?

Detection of Incision by Mass-Balance

The SfM-monitored rill experiment, a tool to detect decisive processes?

Conclusion:

The SfM-monitored rill experiment helps us to **detect** and **link** erosion and accumulation events in eroding rills, concerning their **spatial** and **temporal** characteristics, but it does **not deliver** any exact explanation **formula**.

The microtopography measuring-device can act as a low-cost substitute for a laser scanner in erosion-orientated close-range-photogrammetry.

Future Challenges:

Adapt the SfM-monitored rill experiment in order to provide help for modelling and calculating experts.

Learn how to detect and number turbulence while running Ri.Fl.E.

SfM by Video: Please check our Poster in X1.13, Hall X1

Thanks for staying awake!

Contact:

Alexander Remke Stefan Wirtz Manuel Seeger remk5101@uni-trier.de stefanw-170182@t-online.de seeger@uni-trier.de