The importance of magnetic methods for soil mapping and process modelling. Case study in Ukraine

Oleksandr Menshov¹, Paulo Pereira², Oleksandr Kruglov³, and Anatoliy Sukhorada¹

¹Taras Shevchenko National University of Kyiv, Institute of Geology, 90 Vasylkivska str., Kyiv, Ukraine ²Environmental Management Centre, Mykolas Romeris University, Ateitis, 20, Vilnius, Lithuania ³NSC "Institute for Soil Science and Agrochemistry Research n.a. O.N. Sokolovskiy", 4 Chaikovska str., Kharkiv, Uktaine

Introduction

The correct planning of agriculture fundamental for a İS areas sustainable future in Ukraine. After political problems in the recent Ukraine, new challenges emerged regarding sustainability questions. Soil mapping, modelling and soil magnetism are intensively developing (Brevik et al., 2016; Pereira et al., 2015, Jordanova et al., 2011).

Soil magnetism applying:

- Soil science and Agriculture
- Ecology and sustainable land use management
- Mineral prospecting, oil and gas prospecting and exploration

- Ecosystem services and warfare damage assessment

- Archeology

MS for soil mapping and process modelling:

Magnetic susceptibility (MS) methods are low cost and accurate for the developing maps of agricultural areas

Ukraine

Soil types: Albeluvisols (Soddy-podsolic), Phaeozems (Gray forest), Kastanozems (Chestnut), *Chernozems* (Leached, Typical, Ordinary, Southern, Meadow), *Gleysols* (Bog soils), Cambisols (Brawn and Mountains soils)

Soils of Ukraine

The main soil-climatic zones of

Figure 1. Study area and methods. Poltava region, Konony

Table 1. Descriptive statistics

	Magnetic susceptibility: MS, 10 ⁻⁸ m ³ /kg	Jerusalem artichoke: H, m
Count	66	66
Mean	60.2	1.2
Maximum	81	0.6
Minimum	39	2.0
Standard Deviation	9.3	0.41
Coef. of Variation	0.15	0.35
Median	60	1.1
Correlation	0.54	

Corresponding address: menshov.o@ukr.net

Soil mapping and process modelling

Figure 2. The spatial distribution of the Jerusalem artichoke height: H, m

Figure 4. Magnetic susceptibility and Jerusalem artichoke height correlation, K=0.54

aure 3. The distribution of the soil magnetic susceptibility: MS, 10⁻⁸m³/kg

Soil magnetic susceptibility $\chi \times 10^{-8} \, {\rm m}^3/{\rm kg}$

Breivik, E., Baumgarten, A., Calzolari, C., Miller, B., Pereira, P., Kabala, C., Jordán, A. Soil mapping, classification, and modelling: history and future directions. Geoderma, 264, Part B, 256-274.

Jordanova D., Jordanova N., Atanasova A., Tsacheva T., Petrov P., (2011). Soil tillage erosion by using magnetism of soils – a case study from Bulgaria. Environ. Monit. Assess, 183, 381-394.

Pereira, P., Cerdà, A., Úbeda, X., Mataix-Solera, J. Arcenegui, V., Zavala, L. (2015). Modelling the impacts of wildfire on ash thickness in a short-term period, Land Degradation and Development, 26, 180-192. DOI: 10.1002/ldr.2195

