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Context

Atmospheric chemistry models are becoming increasingly complex, with multiphasic chemistry, size-resolved particulate matter, and possibly coupled to numerical weather prediction models. In the meantime, data assimilation methods have also become more sophisticated. Hence, it
will become increasingly di�cult to disentangle the merits of data assimilation schemes, of models, and of their numerical implementation in a successful high-dimensional data assimilation study. That is why we believe that the increasing variety of problems encountered in the �eld of
atmospheric chemistry data assimilation puts forward the need for simple low-order models, albeit complex enough to capture the relevant dynamics, physics and chemistry that could impact the performance of data assimilation schemes.
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This model, even if not
chaotic, is highly nonlinear,
exhibiting distinct chemical
regimes. The �gure op-
posite represents ozone iso-
pleths for di�erent mean
ROC and NO

x
concentra-

tions. This feature is typ-
ical of lower troposphere
ozone chemistry.

Iterative ensemble Kalman smoother

This algorithm estimates the state at the time t0, L time-steps in the
past from present time tL. Each observation is assimilated a single
time.

This smoother minimizes at each cycle

J (w) =
1

2
(N − 1)wTw+

1

2
||yL −HL ◦ML←0 (x̄0 +A0w) ||2

R
−1
L

with w state vector in ensemble space ;
N the ensemble size ;
yL the observation at time tL;
HL the observation operator at time tL ;
ML←0 the model propagating the state from t0 to tL ;
x̄0 the average of the prior ensemble ;
A0 the anomaly matrix ;
RL the observation error covariance matrix at time tL;

To avoid optimizing the in�ation coe�cient, we use the ��nite-size�
scheme by changing the cost function as such

1

2
(N − 1)wTw→ N

2
ln(εN +wTw)

• Unlike 4D-Var, no need for the full adjoint model; ©
• Like the EnKF, propagation of uncertainties; ©
• Like 4D-Var, nonlinear variational analysis; ©
• Like the EnKF, sampling errors of the ensemble and

need to use in�ation and/or localization. §

Results

A twin experiment was conducted on this model with the SDA IEnKS-N. One grid point out of �ve is observed every 6 hours during 100 000
data assimilation cycles. The forcing parameter of the wind �eld and the two emission �uxes were also estimated.
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Average �ltering and smoothing analysis RMSEs of the L95-GRS
variables, as a function of the DAW length (in units of ∆t =
6h). The RMSEs are normalized by the standard deviations of
the observation error.
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Time evolution (days) of the parameter variables for several DAW
lengths without spin up (main) or after a long time (inset). F is
shown with the original Lorenz unit, while the emission rate unit
is ppbC.day−1 or ppb.day−1

Preliminary results with a CTM

Building on the results of this low-order model, we are testing the localized IEnKS with L = 1 on a state-of-the-art chemical transport model
Polyphemus. We assimilate hourly ozone concentrations from background and rural stations of the Airbase network over Europe and estimate
the ozone concentration �eld. The assimilation period spans 72h, followed by 48h of forecast.

The IEnKS performs as well as the ETKF when it comes to �ltering and the smoothing improves noticeably the score. This �rst result is
promising even though the localization of the IEnKS can be troublesome and an (o�ine) CTM implies a lot of model error. Moreover, the
bene�t for forecasting seems arguable. However, we hope to get a stronger impact of the IEnKS when it will come to parameter estimation.
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Low-order model

The photochemistry module is based on the GRS, which consists of
seven chemical species meant to represent the atmospheric chemistry
of ozone formation from VOC and NO

x
emissions.

ROC + hν
k1−−→ RP + ROC

RP + NO
k2−−→ NO

2

NO
2

+ hν
k3−−→ NO + O

3

NO + O
3

k4−−→ NO
2

RP + RP
k5−−→ RP

RP + NO
2

2k6−−→ S(N)GN

where ROC = reactive organic compounds;
RP = radical pool;
S(N)GN = stable (non-)gaseous nitrogen product.

We use the quasi-steady-state approximation (QSSA) for the radical
pool species RP, which is highly reactive and has the shortest lifetime
among all the GRS species.

[RP] =
k2[NO] + 2k6[NO2]

2k5

(√
1 +

4k1k5[ROC]

(k2[NO] + 2k6[NO2])2
− 1

)

GRS is coupled to the Lorenz-95 model whose 40 state variables,
which extend over a mid-latitude circle, are seen as wind speeds and
direction that advect the GRS chemical species.

dxm

dt
= (xm+1 − xm−2)xm−1 − xm + F, with F = 8

There is therefore a total of 40 wind variables and 200 concentra-
tion variables, de�ned on the circle using an Arakawa C-grid. The
equation for the ozone concentration at a grid point [O3]m+ 1

2
is for

example

d[O3]m+ 1
2

dt
= ψm − ψm+1 − λ[O3]m+ 1

2
+ k3[NO2]m+ 1

2
− k4[NO]m+ 1

2
[O3]m+ 1

2

with ψm = xm[O3]m− 1
2
if xm ≥ 0,

= xm[O3]m+ 1
2
if xm < 0.

and where λ is a scavenging ratio.
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Time evolution of the L95-GRS variables at one grid point. The
L95 variables, �agged �Wind�, are shown with the original Lorenz

unit, while the concentration unit is ppb (ppbC for ROC).


