

The use of MP-AES for the analysis of major and micronutrients in soil

TÕNU TÕNUTARE, KADRI KREBSTEIN, AKO RODIMA ALLAN KÜNNAPAS, RAIMO KÕLLI, IMBI ALBRE

Investing in your future

BY

CC

EGU 2016, SSS12.14, Vienna, 21.04.2016

Introduction

Quantitative analytical techniques for the determination of plant available macro- and microelements in soil:

- Vis spectrometry
- AAS
- ICP-OES & ICP-MS
- MP-AES

Methods

Plant available macro and microelements were extracted from soil using Mehlich 3 (M3) extraction method

MP AES Agilent 4200 was used for the analysis

Methods

Elements determined by M3 extraction method were:

- K, Ca, Mg
- Fe, Mn, Zn, Cu, B
- Al

K by Mehlich 3 method

CALIBRATION GRAPH IN RANGE 1 – 20 ppm AT WAVELENGTH λ =769.897 nm

PEAK OF K at λ =769.897 nm FROM M3 SOIL EXTRACT

Correlation coefficient: 0.99973

Ca by Mehlich 3 method

CALIBRATION GRAPH IN RANGE 40 – 200 ppm AT WAVELENGTH λ=430.253 nm

PEAK OF Ca at λ =430.253 nm FROM M3 SOIL EXTRACT

Correlation coefficient: 0.99740

Mg by Mehlich 3 method

CALIBRATION GRAPH IN RANGE 2 – 25 ppm AT WAVELENGTH λ=518.360 nm

PEAK OF Mg at λ =518.360 FROM M3 SOIL EXTRACT

Peak of Al at λ =396,152 nm

PEAK OF AI 100 ppm IN M3 EXTRACTING SOLUTION

PEAK OF AI FROM OF SOIL EXTRACT PREPARED BY M3 METHOD

Calibration graph of Al by M3 method in range 5 – 100 ppm at λ =396.152 nm

Intensity = (23348.51 * Concentration + 21527.52) / (1 + 0.00 * Concentration) Correlation coefficient: 0.99978

Peaks of Fe from M3 extracts, λ =373.486 nm

PEAK OF Fe 10 ppm IN EXTRACTION SOLUTION

PEAK OF Fe OF M3 SOIL SAMPLE EXRACT

Calibration graph of Fe by M3 method in range 0.5 – 10.0 ppm at λ =373.486 nm

Correlation coefficient: 0.99974

Peaks of Mn from M3 extracts, λ =403.076 nm

PEAK OF Mn 5 ppm IN M3 EXTRACTION SOLUTION

Mn IN M3 SOIL SAMPLE EXTRACT

Calibration graph of Mn by M3 method in range 0.1 – 5.0 ppm at λ =403.076 nm

Intensity = 93850.03 * Concentration + 1.36 Correlation coefficient: 0.99999

Peaks of Zn from M3 extracts, λ =213.857nm

PEAK OF Zn 2 ppm IN M3 EXTRACTION SOLUTION

PEAK OF Zn FROM M3 SOIL SAMPLE EXRACT

Calibration graph of Zn by M3 method in range 0.1 - 2.0 ppm at $\lambda = 213.857$ nm

Intensity = (42109.45 * Concentration + 73.56) / (1 + 0.14 * Concentration) Correlation coefficient: 0.99999

Peaks of Cu from M3 extracts, λ =324.754 nm

PEAK OF Cu 2 ppm IN M3 EXTRACTION SOLUTION

PEAK OF Cu FROM M3 SOIL SAMPLE EXRACT

Calibration graph of Cu by M3 method in range 0.1 - 2.0 ppm at λ =324.754 nm

Correlation coefficient: 0.99987

Instrumental settings

Element	Wavelength (nm)	Viewing position	Nebulizer pressure (kPa)	Read time (s)	Maximum concentration (ppm)
К	769.897	0	240	3	20
Са	430.253	10	240	3	200
Mg	383.829	10	140	3	30
Mg	518.360	0	180	3	30
Fe	373.486	0	120	3	10
Mn	403.076	0	240	3	5
Zn	213.857	0	140	3	2
Cu	324.754	0	240	3	2
Al	396.152			3	100
В	249.772			3	1

() BY

(CC)

Range of elements in analyzed soils

Element	Wavelength of determinationl (nm)	Minimum content in soil (ppm)	Maximum content in soil (ppm)
К	769.897	88	779
Са	430.253	579	15055
Mg	518.360	79	869
Fe	373.486	128	675
Mn	403.076	30	320
Zn	213.857	0.3	14
Cu	324.754	0.2	26
AI	396.152	60	2070
В	249.772	0.3	1.3

Conclusion

MP AES Agilent 4200 is suitable device for determination plant available macro and microelements from soil by Mehlich 3 method

Acknowledgement

- We are thankful for the support of our colleagues from the Department of Soil Science and Agrochemistry of Estonian University of Life Sciences
- Soil samples were taken and partly analysed with the support of project: Baltic Forum for Innovative Technologies for Sustainable Manure Management - Baltic MANURE

Thank you for your attention!

Agilent Technolo