

National **Oceanography Centre**

EGU2016-15636-1

Yevgeny Aksenov (Contact: yka@noc.ac.uk)¹, Michael Karcher², Andrey Proshutinsky³, Ruediger Gerdes², Sheldon Bacon¹, George Nurser¹ Andrew Coward¹, Elena Golubeva⁴, Frank Kauker², An Nguyen⁵, Gennady Platov⁴, Martin Wadley⁶, and Eiji Watanabe⁷

¹National Oceanography Centre, Southampton, ²Alfred-Wegener-Inst Polar, Bremerhaven, Germany, ³Woods Hole Oceanographic Institution, Woods Hole, MA, USA ⁴Institute of Computational Mathematics and Mathematical Geophysics, Novosibirsk, Russia, ⁵Massachusetts Institute of Technology, Cambridge, MA, USA ⁶University of East Anglia, School of Mathematics, Norwich, UK, ⁷Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, Japan

1. Introduction

- Pacific Water brings heat and fresh water from the Northern Pacific into the Arctic Ocean and can impact Arctic sea ice [1]
- Pathways and circulation of the Pacific Water in the Arctic Ocean are not fully known due to lack of observations [2].

3. Results

- In the Beaufort Gyre wind stress curl is anti-cyclonic during the negative or neutral Arctic Oscillation (AO-) periods (1997-2007) vs. the cyclonic positive AO+ periods (1989-1996). The Ekman downwelling is stronger (Fig. 2), resulting in freshwater accumulation in the gyre during the negative / neutral AO- (Fig. 3).
- Stronger Ekman downwelling deepens the Pacific Water in the gyre, increases lateral density gradients and baroclinic response
- This leads to a stronger vertical shear in the relative vorticity, thinning of the halocline and Pacific Water divergence (Fig. 4-6)
- Stronger Ekman downwelling in the Beaufort Gyre during the AOresults in Pacific water being 'pushed' out of the centre of the gyre towards the Siberian shelves (Fig. 7).

4. Discussion and Summary

- We analyse Pacific Water tracer releases in the models from the Forum for Arctic Ocean Modeling project (FAMOS)
- Schematic for the Pacific water accumulation and release in the Beaufort Gyre is proposed as follows (Fig. 8)
- Changes in winds from the cyclonic AO+ to anti-cyclonic AOperiods increase Ekman downwelling in the gyre and pushes down halocline and Pacific Water
- A stronger density gradient creates divergence of the Pacific Water towards the Beaufort Gyre periphery
- Anti-cyclonic winds reduce Pacific Water content in the gyre.

Arctic Pacific water dynamics from model intercomparison and observations

welling in the Beaufort Sea is stronger.

release in the Beaufort Gyre.

(cc) (i)