

Universität Basel

Introduction

highly Mercury is a toxic trace element to humans and animals. **Exposure to trace levels** of Hg may cause severe health effects (Fig.1.).

Mercury is present in the environment as stable isotopes seven (Fig. 2).

Fig. 2. Mercury Stable Isotopes

Aims

I- Investigating and modelling the dynamics of inorganic mercury added to soil (via rainfall or other *inputs*) by studying the temporal change in solubility of inorganic mercury tracer (¹⁹⁶Hg⁺²) spiked into soil samples.

Reproductive

System

Damage

bioavailability of **II-** Assessing the lability and mercury in some mercury contaminated soils by developing a stable isotope dilution procedure using enriched Hg spike (30% ¹⁹⁶Hg).

Quantification of Labile Soil Mercury by Stable Isotope Dilution Techniques Waleed Shetaya, Jen-How Huang, Stefan Osterwalder, Christine Alewell waleedhares.shetaya@unibas.ch

Fig.1. Health Effects of Mercury

Methods

Soils with varied characteristics and Hg contamination levels were sampled from the Black Forest, Baden-Württemberg, and from the Upper-Valais Germany region, Switzerland (Fig.3). Soil samples were spiked with enriched ¹⁹⁶Hg (6 mg kg⁻¹) and equilibrated for different times **before** ¹⁹⁶Hg conc. and ¹⁹⁶Hg : ²⁰¹Hg ratio were assayed by ICP-MS. Labile Hg (mg kg⁻¹) was calculated from (Eq.1).

Results

*I***-** In all soils an apparently instantaneous sorption reaction of (¹⁹⁶Hg) was followed by a slower (time-dependent) sorption (Fig 4.).

II- Progressive sorption of mercury (¹⁹⁶Hg) from solution was greatest in topsoils with organic contents higher and apparently reaching completion while over hours, substantially slower sorption rate was observed in mineral subsoils (Fig 4.).

III- Within the soil pH range investigated (3.5-7), soil organic content was found to be the sole factor that dictates the sorption rate of mercury with a direct logarithmic relationship (Fig.5.).

IV- The Hg_F values were elevated (~40% of total Hg) in contaminated locations compared to background soils indicating greater relative availability.

M is the average atomic mass of Hg, W is the mass of soil (kg), C_{spk} is the conc. of Hg in the spike (mg L⁻¹), V_{spk} is the volume of spike (L), and Rss is the equilibrium ratio (¹⁹⁶Hg:²⁰¹Hg).

Fig.5. ¹⁹⁶Hg sorption (%) vs soil TOC (%) at different equilibration times