Past primary sex-ratio estimates of 4 populations of Loggerhead sea turtle exhibiting temperature-dependent sex determination

Jonathan Monsinjon1, Yakup Kaska2, Tony Tucker2, Anne Marie LeBlanc5, Kris Williams4, David Root5, Imed Jribi6 & Marc Grondot1

1 Université Paris Sud, Laboratoire IDE, Écologie des populations et des communautés, Orsay, France
2 Marmara Üniversitesi, Sen Muhasebe Fakültesi, Bisiklet Alanı, Denizli, Turkey
3 Mote Marine Laboratory, 1600 Kim Thompson Parkway, Sarasota, Florida 34236, USA
4 Department of Biology, Georgia Southern University, P.O. Box 8904, Statesboro, Georgia 30461 USA
5 Centre de Recherche Project, P.O. Box 8441, Savannah, Georgia 31412 USA
6 Faculté des Sciences de Sfax – Université de Sfax, B.P 1171, Sfax 3000, Tunisia

BACKGROUND

Ecotermic species are supposed to be strongly affected by climate change and especially those that exhibit temperature-dependent sex determination (TSD). Most of the turtles exhibit TSD and sexual phenotype of juveniles is dependent on the temperature of the nest.

To date, no study have been able to predict primary sex-ratio at pertinent ecological time and spatial scales to assess sea turtles viability under climate change constraints.

We aim to map future distribution of suitable nesting sites of the loggerhead sea turtle accounting for temperature-dependent phenotypic plasticity of embryonic growth and sexual differentiation.

Here we provide a new methodology based on the duration of the Thermo-Sensitive Period* (TSP) to model the primary sex-ratio.

PHENOTYPIC PLASTICITY

** Embryonic Growth rate TRN (Thermal Reaction Norm**)

** Sex-ratio TRN (Thermal Reaction Norm**)

CLIMATE DATA

Environmental temperature has been obtained from ECMWF datasets (European Centre for Medium-range Weather Forcasts)

- Sea surface temperature (black) and 2 m air temperature (grey) at Dalyan beach, Turkey.

MODELING FRAMEWORK

SEASONAL TRENDS

- Recorded incubation T°C
- Modeled incubation T°C
- Growth rate TRN
- Growth model
- Predicted sex-ratio

TAKING HOME MESSAGE

We found that sea turtles are used to lay their eggs during the period when both sexes can be produced in variable proportions. Pulled together, incubation duration, sex-ratio, hatching success and reproductive phenotype can mitigate, amplify or neutralize the effect of climate change.

This point might explain why sea turtles have been resilient to past climate changes and if it may happen also for future changes in climate temperature.

* The Thermo-Sensitive Period is the period of development during which sexual differentiation is sensitive to temperature.
** The Thermal Reaction Norm describes the pattern of phenotypic expression of a single genotype across a range of temperature.