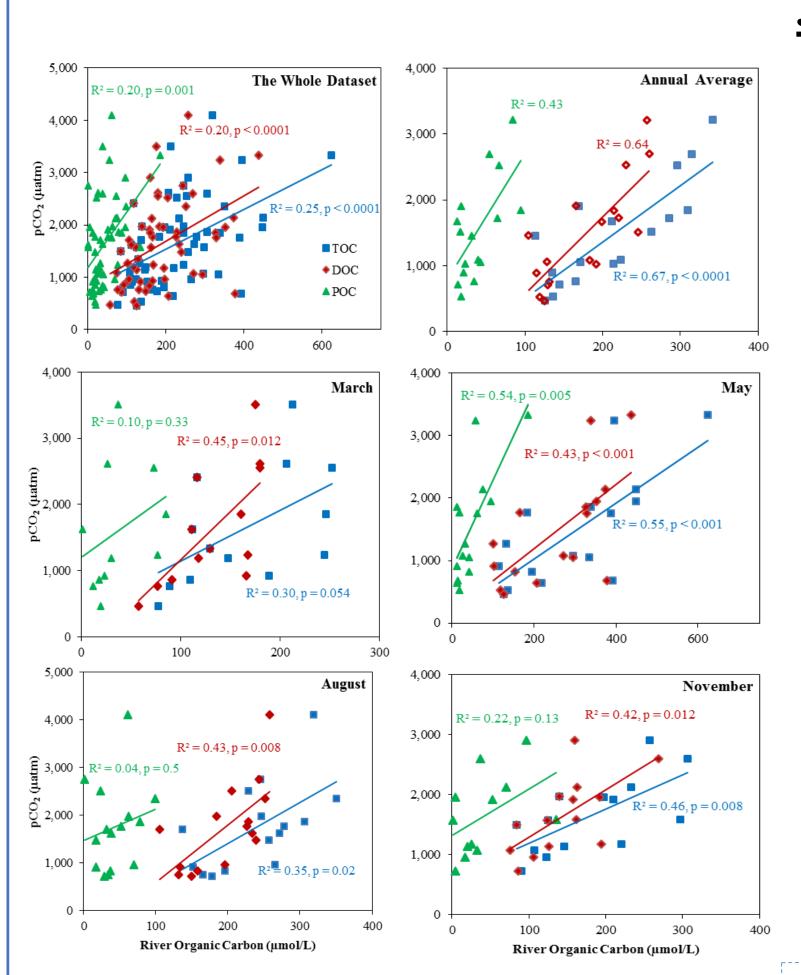


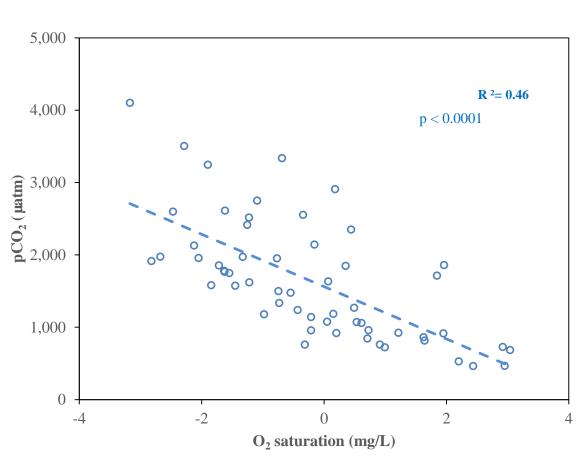
1. Summary

The research explores the pCO_2 biogeochemistry in one of the most important but significantly underrepresented river systems in the global aquatic pCO_2 landscape-the Yangtze River network. Heterotrophic respiration of terrestrially derived organic carbon in the water column is concluded as an essential but incomplete source of excessive dissolved CO_2 in the river. Significant benthic respiration and/or direct lateral transport of soil CO₂ (together makes up ~ 80%) must present to sustain pCO₂ under the current CO_2 emission rate. The research further sheds light on the effect of increasing channel impounding (typical for today's Asian rivers) on river pCO_2 by exploring the temporal and spatial distribution of chlorophyll a and the biogeochemical composition of river particulate organic carbon (POC). Although increased autotrophy (and pCO_2 decrease) is found in impounded sections (especially in nutrient rich rivers), the pCO_2 biogeochemistry is still dominated by terrestrial processes (e.g., transport of organic carbon and soil CO_2 , and soil erosion, etc.) on the whole. The influence of sectional impounding on river CO₂ supersaturation is for the first time evaluated on the whole river scale and concluded to be temporal and regional (only 8% of the sites are significantly affected).



The research was conducted in the subtropical Yangtze River system. The nine sampling sites on the mainstem are Panzhihua (PZH), Pingshan (PS), Yibin (YB), Luzhou (LZ), Chongqing (CQ), Wanzhou (WZ), Yichang (YC), Wuhan (WH), and Datong Hydrological Gauging Station (DHGS). The eight major tributaries include Yalong Jiang (YL), Min Jiang (MJ), Dadu He (DDH, a tributary of MJ), Jialing Jiang (JLJ), and Han Jiang (HJ) on the north, the Wu Jiang (WJ) Xiang Jiang (XJ) and Gan Jiang (GJ) on the south. Among the sampling sites, PS and WZ on the mainstem and JLJ on the tributary are located in reservoirs. Fieldwork was conducted in 2014–2015.

Dynamic biogeochemical controls on river pCO₂ with increasing river impoundment: an example of the Yangtze River


Shaoda Liu (lsdeel@gmail.com) and Xi Xi Lu (geolxx@nus.edu.sg)

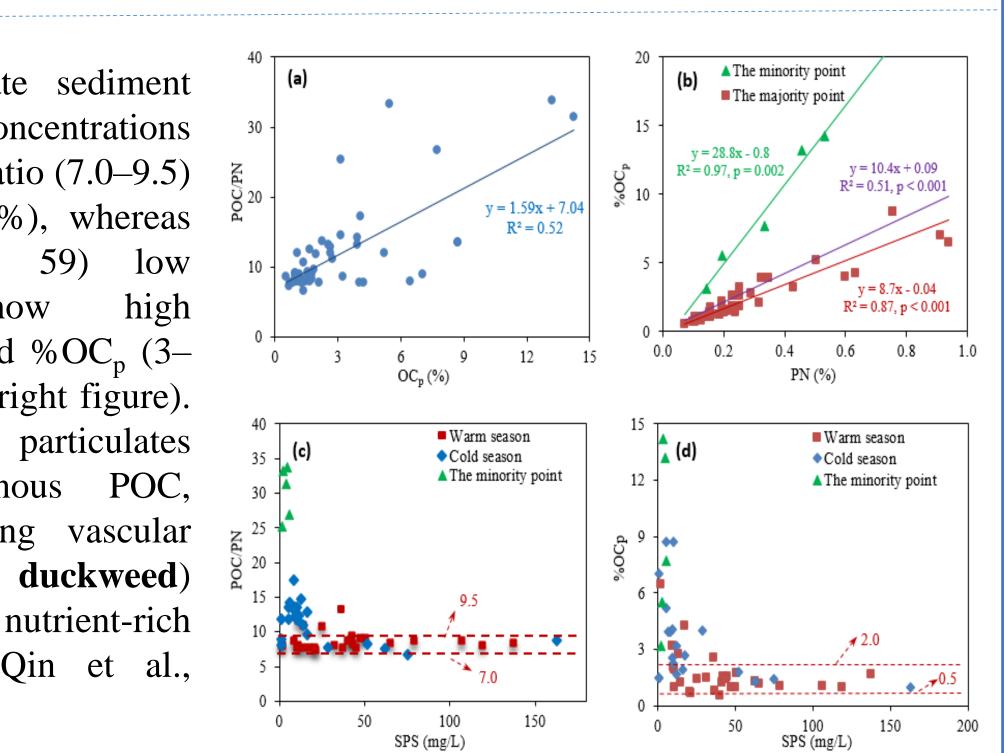
Department of Geography, National University of Singapore, AS2, 1 Arts Link, Kent Ridge, Singapore 117570

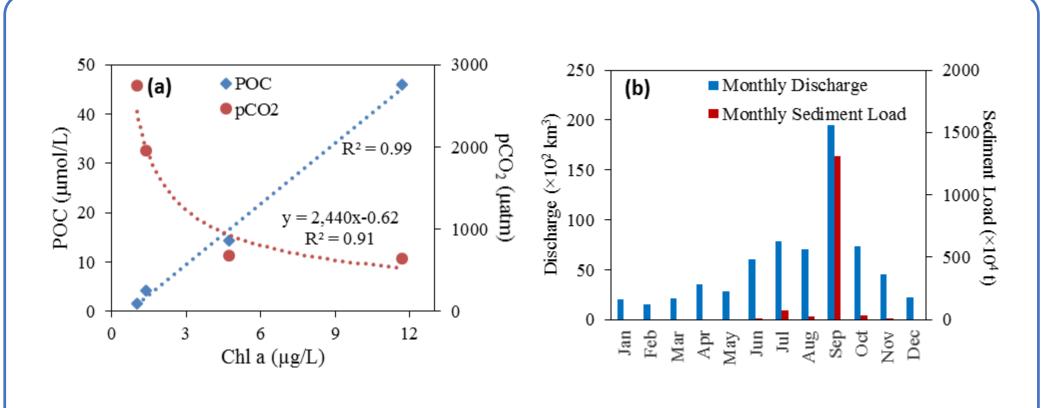
Temporal variability in pCO_2 is minimal on most sites through the year (graph not shown). However, spatial (inter-river) pCO_2 varies significantly and correlates with riverine organic carbon species (DOC, POC and TOC). The seasonal independent correlations indicate that riverine CO_2 supersaturation is probably sustained by channel heterotrophic respiration terrestrially-derived in the river. Alternatively, the correlations might also indicate co-occurrence of riverine pCO_2 and organic carbon species in the catchment.

3. Result and Discussion

Riverine pCO_2 is negatively correlated with dissolved O_2 , clearly suggesting Facts used for the above estimation of C flux heterotrophic respiration Of Channel depth: 5 m (conservative estimate) allochthonous organic carbon as a source Current velocity: 0.5 m/s (conservative estimate) of pCO₂ in the river. However, a primary Average pCO₂: 1610 µatm (66 µmol 1⁻¹) calculation using field and literature data Average TOC: 225 µmol 1-1 suggests heterotrophic respiration alone Average CO₂ flux: 296 mmol m⁻² day⁻¹ (mean of 59 field cannot sustain the observed pCO_2 and Heterotrophic respiration: 24–68 mmol m⁻² day⁻¹ (Zhai et al., 2007) CO_2 flux (see right).

Suspended particulate sediment (SPS) at high concentrations show low POC:PN ratio (7.0–9.5) and $\%OC_{p}$ (0.5–2.0%), whereas at five (out of 59) low concentrations show POC:PN (25–34) and $\%OC_{p}$ (3– 14%) (b, c, d in the right figure). High OC suspended particulates indicate autochthonous POC, produced by floating vascular plants (e.g., commonly found in nutrient-rich impounded areas (Qin et al., 2013).


The temporal and spatial distribution of POC compositional characteristics (%OC_n and POC/PN) indicate the dominant control of terrestrial processes (e.g., organic matter transport and soil erosion) on the river pCO_2 biogeochemistry, especially in warm seasons.


Table showing pCO₂, estimated autochthonous POC, and other biogeochemical characteristics of the affected sites. The group is associated with extremely low SPS, the highest POC/PN, high %OC_n and Chl a concentration, and low pCO₂ values, indicative of strengthened autotrophic activity at these points.

Site	Month	SPS (mg/L)	Chl a (µg/L)	POC/PN	%OC _p	pCO ₂ (µatm)	dCO ₂ (µmol/L)	POC (µmol/L)	TOC (μmol/L)	Estimated auto. POC (µmol/L)	Auto. POC / dCO ₂	Auto. POC / TOC
PS	Aug	5.3	1.7	27	7.7	760	27	34	166	26	97%	16%
YB	Mar	2.7	1.9	33	5.5	761	36	12	89	9	26%	11%
YB	Nov	1.6	1.5	25	3.1	722	29	4	91	3	11%	4%
JLJ	Mar	3.9	11.7	31	14.2	645	32	46	216	35	109%	16%
XJ	Nov	4.8	1.4	34	13.2	1915	87	52	210	40	46%	19%
The selected sites (average \pm SD)		3.6 ± 1.3	3.6 ± 4.0	30 ± 3	8.8 ± 4.3	961 ± 479	42 ± 23	30 ± 19	154 ± 56	23 ± 14	$58\%\pm 39\%$	$13\%\pm5\%$
The whole river (average \pm SD)		28.2 ± 34.8	1.4 ± 1.7	12 ± 6	3.0 ± 3.0	1610 ± 825	66 ± 35	43 ± 36	224 ± 107	_	-	-

Estimated time & length for CO₂ exhaustion

- Dissolved CO₂ pool only: 1.1 days, or < 50 km downstream;
- TOC + dissolved CO_2 : < 5 days, or 220 km downstream.
- Water column heterotrophic respiration represents only 8-22% of the CO₂ flux; the rest (> 80%) comes from later soil CO_2 transport and/or benthic respiration.

A typical site (JLJ, an impounded area) showing the dominant control of autochthonous processes on riverine pCO_2 . POC increases linearly with Chl a (indicating autochthonous source) and pCO₂ decreases exponentially, unlike the majority of other sites. This is due probably to its specific hydrological regime (b). One single month (September) accounted for > 40% of the annual discharge and > 95% of the annual sediment load during the study year (2014–2015), whereas water and sediment flow in other months were generally low (CWRC, 2014).

Bulletin, 58(9), 961-970. Chemistry, 107(3), 342-356.

This work was financially funded by Humanities and Social Science Funds (R-109-000-172-646 and R-109-000-191-646) of National University of Singapore and National Science Foundation for Distinguished Young Scholars (No. 51325902) of China. The authors declare no conflicts of interest. The data used are listed in the tables, figures and online supporting information of the paper. The authors thank Yawei Zhai and Lingyu Li for their help during fieldwork.

4. Conclusion

• Channel heterotrophic respiration comprises an important source of riverine supersaturated CO_2 as indicated by the correlations between pCO_2 and river organic carbon and the negative relationship between pCO_2 and dissolved O_2 .

• Essential benthic and/or lateral transport of soil-derived CO₂ must present. However, to put these major processes on accurate scale needs further research.

pCO₂ can be significantly drawn down in nutrient-rich impounded areas. However, terrestrial and heterotrophic processes still dominate the pCO_2 biogeochemistry in the increasingly impounded river system.

References

CWRC (Changjiang Water Resource Committee) (2014), Bulletin of Changjiang (Yangtze River) sediment, Changjiang Press, Wuhan, China.

Qin, B., G. Gao, G. Zhu, Y. Zhang, Y. Song, X. Tang, H. Xu, and J. Deng (2013), Lake eutrophication and its ecosystem response, Chinese Science

Zhai, W., M. Dai, and X. Guo (2007), Carbonate system and CO₂ degassing fluxes in the inner estuary of Changjiang (Yangtze) River, China, Marine

Acknowledgement

