

Y POLITECNICO DI MILANO

The POLIMI forecasting chains for real time flood and drought predictions

A. Ceppi, G. Ravazzani, C. Corbari, M. Mancini

Vienna, 18 - 22 April 2016

Session NH1.6/AS1.4/HS4.9 - Coupled atmosphere-hydrological modeling for improved hydro-meteorological predictions

Background & Aims of the study

Over the last twenty years severe river floods and droughts have occurred in Europe, causing thousands of deaths and billion Euros in insured economic losses. Experience suggests that appropriate warnings with sufficient lead time can mitigate the consequences of heavy precipitation events and long dry periods. Therefore, meteorological forecasts coupled to hydrological models are nowadays widespread to decide on an early watersystem control actions to prevent or reduce problems with floods, droughts or water quality and regulations.

The two faces of the same coin

Floods

Droughts

Areas of study:

- 1 Three catchments located northern than Milan urban area (the Olona, Seveso and Lambro River basins)
- Idro Lake between the Lombardy and Trentino 2. Regions

Aim:

- How early warning systems are an effective 1. complement to structural measures for flood control in Milan city?
- Can we forecast the water lake level for a better 2 management of the upstream and downstream basin?

Areas of study:

- 1. Muzza Bassa Lodigiana Consortium in the Po Valley, northern Italy
- 2. The Guzzetti agricultural company in the Capitanata area of the Puglia region, southern Italy
- A golf course near Linate (Milan) airport 3.

Aim: can we save irrigation water and use it in wiser way?

Meteorological models

GFS	Deterministic models by ISAC-CNR spatial resolution: 50 km, Δt 3h, forecast horizon +144h	
Bolam	spatial resolution: 11 km, Δt 1h, forecast horizon +72h	
Moloch	spatial resolution: 1.5 km, Δt 1h, forecast horizon +45h	
COSMO- LEPS	Probabilistic model by ARPA Emilia-Romagna spatial resolution: 7 km, Δt 3h, forecast horizon +132h 16 ensemble	arpae _{genzia} prevenzione ambiente energia emilia-romagna
WRF	 spatial resolution: 3 km, Δt 1h, forecast horizon +246h, by Terraria company spatial resolution: 2.5 km, Δt 1h, forecast horizon +48h, by University of Baleari Islands 	Universitat de les Illes Balears
	 spatial resolution: 5.5 km, Δt 1h, forecast horizon +72h, 8 ensembles, by Epson Meteo Centre 	CENTRO EPSON METEO®

POLITECNICO DI MILANO

The POLIMI forecasting chain for flood and drought predictions

The POLIMI hydrological model: FEST-EWB

www.fest.polimi.it

The POLIMI forecasting chain for flood and drought predictions

Observed weather data: official and *citizen scientist* stations

ARPA + Meteonetwork stations

- ~ 850 weather stations
- real time data every 20 minutes

The POLIMI forecasting chain for flood and drought predictions

15/07/2009

The Olona flood (Varese): 30 milion €

18/09/2010

The Seveso flood (Milan): 80 milion €

08/07/2014

The Seveso flood (Milan): 55 milion €

15/11/2014 The Lambro flood (Monza): 6 milion €

The POLIMI forecasting chain for flood and drought predictions

The POLIMI forecasting chain for flood and drought predictions

The POLIMI forecasting chain for flood and drought predictions

The POLIMI forecasting chain for flood and drought predictions

The POLIMI forecasting chain for flood and drought predictions

The POLIMI forecasting chain for flood and drought predictions

Confronto Modelli per l'emissione del 2016-04-11 (Dati riportati in orario UTC +2)

The Multi-Model approach

Ravazzani., G., Amengual, A., Ceppi, A., Romero, R., Homar, V., Mancini, M. A hydro-meteorological ensemble prediction system for real-time flood forecasting purposes in the Milano area. **Submitted to Journal of hydrology.** Special issue "Flash floods, hydro-geomorphic response and risk management"

The POLIMI forecasting chain for flood and drought predictions

Dashboard FILL: Forecast of Idro Lake Level project

Idro lake, the first regulated lake in Italy since 1923 for irrigation purpose

Lake level control and downstream flood attenuation

Tunnel (galleria degli agricoltori)

Gated spillway

POLITECNICO DI MILANO

Basin area: 1473 km²

The POLIMI forecasting chain for flood and drought predictions

Dashboard FILL: Lake regulations

Forecasts min/max lake levels [m asl] according to COSMO-LEPS & FEST-WB coupled simulations

EREGOLAZIONI Modello utilizzato: Cosmo-Leps>> Data emissione: 2016-04-05

Regloare i valori di apertura delle paratie direttamente nei grafici. Una volta completata la regolazione premere il pulsante "Elabora dati" per avviare la simulazione.

ATTENZIONE: i tempi di simulazione possono essere lunghi.

0.1

0.1

Abilita Galleria Ene

Elabora comunque simulazione

Aggiungi al Report

Nome:

admin-Cosmo-Leps-13-04-2016 12-59

ATTENZIONE: salvare su base dati allunga notevolmente i tempi di simulazione

Elabora dati

Dati riportati in orario UTC +2

The POLIMI forecasting chain for flood and drought predictions

Dashboard FILL: Lake regulations

Forecasts min/max lake levels [m asl] according to COSMO-LEPS & FEST-WB coupled simulations

Regloare i valori di apertura delle paratie direttamente nei grafici. Una volta completata la regolazione premere il pulsante "Elabora dati" per avviare la simulazione.

ATTENZIONE: i tempi di simulazione possono essere lunghi.

The POLIMI forecasting chain for flood and drought predictions

0.2

0.1

G7

PREvision and Guide for Irrigation (PREGI): coupling metereological forecasts and hydrological model for irrigation water needs

Crop irrigation water: synergism between soil water balance model and weather forecasts

The POLIMI forecasting chain for flood and drought predictions

PREvision and Guide for Irrigation (PREGI): coupling metereological forecasts and hydrological model for irrigation water needs

To follow or not to follow the forecast system

Can we save irrigation water coupling metereological forecasts and hydrological model?

Ceppi, A., Ravazzani, G., Corbari, C., Salerno, R., Meucci, S., and Mancini, M., (2014) Real time drought forecasting system for irrigation management, Hydrol. Earth Syst. Sci., 18, 3353–3366.

The POLIMI forecasting chain for flood and drought predictions

The SEGUICI Project

Smart technologies for water resources management for civil consumption and irrigation

Precipitation [mm]

Air Temperature [°C]

The POLIMI forecasting chain for flood and drought predictions

The POLIMI forecasting chain for flood and drought predictions

The SEGUICI Project

Forecasts based by WRF & FEST-EWB

The POLIMI forecasting chain for flood and drought predictions

Smart technologies for water resources management for civil consumption and irrigation

Secugnago

Soil Moisture

Lead Time

SM - EWB		Contraction (CE)							
Secugnago	d+0	d+1	d+2	d+3	d+4	d+5	d+6	d+7	d+8
R ² [-]	0.92	0.85	0.86	0.84	0.78	0.74	0.69	0.62	0.50
MAE [-]	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.03	0.03
MRE [%]	0.69%	0.18%	-0.88%	-1.65%	-2.28%	-3.17%	-3.62%	-3.79%	-3.58%

Livraga

From 1 June to 30 September

SM - EWB		Contraction of the second			Crr				
Livraga	d+0	d+1	d+2	d+3	d+4	d+5	d+6	d+7	d+8
R ² [-]	0.94	0.88	0.88	0.86	0.82	0.78	0.75	0.71	0.63
MAE [-]	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01
MRE [%]	0.32%	0.38%	0.19%	0.08%	0.04%	-0.10%	-0.22%	-0.21%	-0.11%

From (cyber-)space to ground: new technologies for smart farming, Submitted to Hydrology Research

Hydrological model output: Soil Moisture forecasts

Puglia, southern Italy, the Capitanata area: the Guzzetti agricultural company

 Current situation

Current situation and forecasts of soil moisture

Valore del: 2016-04-10 02:00:00

Emissioni Ensemble disponibili dal 2015-04-23 al 2016-04-11 Dati Simulati disponibili dal 2015-04-22 al 2016-04-11 Dati osservati disponibili dal al 2015-04-11 al 2016-12-30

The POLIMI forecasting chain for flood and drought predictions

Selezionare la data

Local hourly forecasts of hydrological variables from the FEST-EWB and WRF models

The POLIMI forecasting chain for flood and drought predictions

Local hourly forecasts of meteorological variables from the FEST-EWB and WRF models

Forecast issued on 2016-05-27 for 48 hours ahead

Radiazione solare osservata
 Radiazione solare prevista: ENS1
 Radiazione solare prevista: ENS2
 Radiazione solare prevista: ENS3
 1/3 V

The POLIMI forecasting chain for flood and drought predictions

Selezionare la data di rilevazione: 2015-06-01 Visualizza Idro Selezionare la data The POLIMI forecasting chain for flood and drought predictions

Milano: golf course near Linate (Milan) airport

PREGI Dashboard di controllo Centro Sportivo Saini, Milano

Umidità

B Dashboard >

Visualizzazione mappe:

PC.G.

Current situation and forecasts of soil moisture

Valore del: 2016-03-17 02:00:00

POLITECNICO DI MILANO

Emissioni Ensemble disponibili dal 2015-04-23 al 2016-03-18 Dati Simulati disponibili dal 2015-04-22 al 2016-03-18 Dati osservati disponibili dal al 2015-04-20 al 2016-12-30

Hydrological model output: Soil Moisture observations

Hydrological model output:

Evapotranspiration, Land Surface Temperature observations

1 June 2015

The POLIMI forecasting chain for flood and drought predictions

1 July 2015

1 August 2015

Flood and drought mitigation risk requires knowledge and accurate analyses that must be acquired by scientists and recognized by public authorities.

The role of scientific research and technological development must be appreciated and tested by institutions.

As non-structural method, the POLIMI hydro-meteorological chain can be used to predict floods in Milan urban area or to regulate the Idro Lake water level, however some suggestions are strictly required to improve the hydrometeorological chain:

- 1) Meteorological data (above all precipitation) are not always sufficient to cover the entire basin area, and even hydrological information needs to be incresead. Additional data coming from radar networks are suggested.
- 2) A forecast horizon of two days is required for an operational chain over the three urban basins, and accurate quantitative forecasts are necessary at least one day in advance.
- The use of hydrological ensemble prediction systems is also an effective and promising tool to help civil protection actions in regulating the Idro Lake.

The implementation of an operative system for real-time forecast of irrigation water needs over an irrigation area is a parsimonious support for water management that provide actual and forecasted soil moisture dynamics at high spatial resolution, and it can mitigate conflicts in water use among farmers, hydroelectric producers, environmental agencies, tourist activities.

The system combines satellite monitoring of LST and vegetation at high spatial resolution, quantitative meteorological forecasts and detailed distributed hydrological modelling of soil water balance and crop water needs.

This developed tool for irrigation management has a higher reliability in comparison with flood forecasting systems, because it is characterized by slower and persistent weather dynamics over larger areas. One can consider, for instance, the large difference in hydrological processes between rainfall events with intensities which can reach up to 100 mm h⁻¹ over areas of a few tens of km² (flood events) and events with evapotranspiration rates of about 7-8 mm per day over areas of a few thousand of km² (drought events).

Thank you for your attention

alessandro.ceppi@polimi.it

The POLIMI forecasting chain for flood and drought predictions

