

V POLITECNICO DI MILANO

POLITECNICO

MILANO 1863

Vienna, 18 - 22 April 2016

Session HS4.1/AS4.30/GM9.12/NH1.7 Flash floods and associated hydro-geomorphic processes: observation, modelling and warning

Real time probabilistic precipitation forecasts in the Milano urban area: comparison between a physics and pragmatic approach

A. Ceppi¹ G. Ravazzani¹, A. Amengual², G. Lombardi¹, V. Homar², R. Romero² and M. Mancini¹

 ¹ Department of Civil and Environmental Engineering, Politecnico di Milano, Milano, Italy
² Grup de Meteorologia, Departament de Física, Universitat de les Illes Balears, Palma de Mallorca, Spain

Background

Precipitation forecasts from mesoscale numerical weather prediction (NWP) models often contain features that are not deterministically predictable. In particular, accurate forecasts of deep moist convection and extreme rainfall are arduous to be predicted in terms of amount, time and target over small hydrological basins due to uncertainties arising from the numerical weather prediction, physical parameterizations and high sensitivity to misrepresentation of the atmospheric state, therefore they require a probabilistic forecast approach.

Objectives

Explore different set-ups of ENSEMBLE simulations to detect what is the most reliable for real time flood forecasting of convective events in Milan

Approach

The first approach is based on a hydrological ensemble prediction system (HEPS) designed to explicitly cope with uncertainties in the initial and lateral boundary conditions (IC/LBCs) and physical parameterizations of the NWP model. The second involves a pragmatic post-processing procedure by randomly shifting in space the precipitation field provided by the deterministic WRF control run in order to get a cluster of different simulations.

Flood and urbanization problem

Milan city is a flood prone area that has been frequently flooded in the past and recent years.

ANNI	N.	DATA	DURATA
1	1	03.10.1976	13,50
1976	2	06.10.1976	4,00
	3	13.10.1976	2,00
	4	30/31.10.1975	24,50
	5	31.07.1977	5,25
	6	29.08.1977	5.25
1977		29/30.08.1977	12,50
	8	47.00.4077	4,00
	10	07 10 1977	9.17
	44	26.02.1078	17.69
	12	25.02.1978	15.00
1978	13	22.05.1978	5.50
12020	14	22.05.197B	8,17
	15	17.05.197B	0.50
	16	28/29.03.1979	13,50
	17	02.07.1979	1,00
	18	13.07.1979	0,75
	19	18.08.1979	1,17
	20	24.08.13/9	1,00
1070	00	21.03.1375	3,23
1	23	21/22/09 1979	12.83
	24	13.10.1979	4,17
	25	14 10 1979	10,75
	26	17 10 1979	7.25
	27	28.10.1979	7,42
	- 28	22.10.1979	1.75
_	104	23.12.1979	6,25
+000	30	10.05.1980	1.33
1980	31	17.10.1900	4.00
1001	32	04.00.1001	5.00
1301	34	27.09.1901	1.01
1085	95	07.09.1982	0.50
1004	36	21.09.1982	0.50
1049			0.00
1084	_		0.00
1005			0.00
1000	97	200.05.10000	9.60
1000	60	23.03.1505	2,00
19601	30	02.00.1987	2 93
1000	40	10 16 1088	1.60
1000	40	12.10.1800	1,00
19639	44	17 10 1000	0,00
1990	41	17:10.19:00	0.50
1991	42	59.00.1991	0.25
1992	43	11.07.1992	3,00
	44	09.09.1992	7,25
+000	45	23.06.1993	0.17
1892	40	27.08.1353	0,67
1001	47	20.07.1004	0.04
1994	40	20.07.1994	0.83
1995			0.90
	49	22.05.1996	2,50
1308	50	14 11 1996	2.00
1007	50	17.07.1007	1.50
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

List of main floods in the 70s, 80s and 90s

Recent floods: the seven analyzed events

7 February 2009

- Strafitorm precipitation
- Basins: Olona, Seveso and Lambro

15 July 2009

- Convective precipitation
- Basin: Olona

18 September 2010

- Strafitorm precipitation
- Basins: Seveso and Lambro

8 July 2014

- Convective precipitation
- Basins: Seveso and Lambro

27 April 2009

- Strafitorm precipitation
- Basins: Olona, Seveso and Lambro

12 August 2010

- Convective precipitation
- Basins: Seveso and Lambro

1 November 2010

- Strafitorm precipitation
- Basins: Olona, Seveso and Lambro

Hydrological model: FEST-WB

Dynamical downscaling performed with WRF 3.4 with: 2.5 km grid spacing and 28 vertical levels

Initial and Boundary Conditions coming from the global ECMWF

HIGH RESOLUTION => CONVECTION EXPLICITLY SOLVED

Initial and Boundary condition: ECMWF 0.25° WRF grid: 2.5 km Forecast horizon: 48h Temporal output: 1 hour Starting run: 00:00 UTC Vertical levels: 28 Shortwave radiation scheme for the WRF: Dudhia; Dudhia (1989, JAS) Longwave radiation scheme for the WRF: RRTM; Mlawer et al. (1997, JGR) Microphysics scheme for the WRF: WSM6; Hong and Lim (2006, JKMS) Land surface model: Noah Planetary boundary layer for the WRF: MYJ; Janjic (1994, MWR)

The WRF model domain

Different approaches: physics vs pragmatic

PILB: Perturbed Initial and Lateral Boundaries (PILB) ensemble

European Center for Medium range Weather Forecasts – global Ensemble Predictions System (ECMWF-EPS) consists of 50 members, operating at T639 spectral resolution (~32 km), that are generated by perturbing an initial analysis. Perturbations are derived from flow-dependent singular vectors computed daily at ECMWF in order to span the synoptic-scale uncertainties of the day (Buizza and Palmer, 1995; Molteni et al., 1996). The 20 ECMWF-EPS members exhibiting the largest diversity over our numerical domain are identified and used as initial and boundary conditions for the entire PILB ensemble. To this end, we applied to the 50 ECMWF-EPS members a k-means clustering algorithm using the Principal Components of the 500 hPa geopotential and 850 hPa temperature fields over the area spanned by the WRF domain.

MPS: Mixed-physics ensemble

Microphysics scheme	Planetary boundary scheme (PBL)
Purdue Lin (Lin et al., 1983)	Yonsei University (YSU; Hong et al, 2009)
Ferrier (1994)	Mellor-Yamada-Janjic (MYJ; Janjic, 1994)
WRF single-moment 6-class	Mellor-Yamada Nakanishi Niino level 2.5
(WSM6; Hong and Lim, 2006)	(MYNN; Nakanishi and Niino, 2006)
Goddard scheme (Tao et al., 1989)	Asymmetric convection model 2 scheme (ACM2; Pleim, 2007)
New Thompson (Thomson et al., 2008)	

Ravazzani., G., Amengual, A., Ceppi, A., Lombardi, G., Romero, R., Homar, V., Mancini, M. A hydro-meteorological ensemble prediction system for real-time flood forecasting purposes in the Milano area. **Submitted to Journal of hydrology.** Special issue "Flash floods, hydro-geomorphic response and risk management"

Reanalysis of the two major convective flood events

80 milion € as total damages!

Results: Precipitation and Discharge **PILB vs MPS**

Peak Box plot, Zappa et al, 2013 (*Hydrological processes*)

Reanalysis of the two major convective flood events

Return period of this meteorological event: 100-200 years

55 milion € as total damages!

Results: Precipitation and Discharge PILB, MPS, MPS1h

Peak Box plot, Zappa et al, 2013 (*Hydrological processes*)

% Ensemble exceeding the warning threshold		18 September 2010					
	C	PILB	MPS	Lagged			
Seveso	Cantù	20%	50%	18%			
Landara	Peregallo	35%	85%	55%			
Lambro	Milano	10%	40%	27%			

	% Ensemble exceeding the warning threshold				8 July 2014		
		U	PILB	MPS1h	MPS	Lagged1h	Lagged
2	Seveso	Cantù	25%	25%	15%	17%	42%
	Lambra	Peregallo	50%	50%	55%	25%	42%
	Lambro	Milano	10%	10%	10%	0%	0%

This physics approach has a high computational cost!

The convective event of 8 July 2014 on the Seveso basin

Q observed: 48.9 m³/s

The convective event of 8 July 2014 on the Seveso basin

Cantù gauging section

Q simulated by the hydrological model FEST-EWB: 34.6 m³/s

The convective event of 8 July 2014 on the Seveso basin

Cantù gauging section Q forecasted by the meteorological WRF deterministic model: 8.2 m³/s

Spatial comparison of the target rainfall: observed vs forecasted

The pragmatic approach: Shift Target (ST) ensemble

Theis et al., 2005, *Met. App.* 40 translations (N, NE, E, SE, S, SW, W, NW by 10, 20, 30, 40, 50 km) of the forecasted rainfall field of the WRF deterministic (control) run

Conceptual scheme

Real domain, no shift

Shifted domain

The pragmatic approach: Shift Target (ST) ensemble

The convective event of 7-8 July 2014 on the Seveso basin: shift-target simulations

From rainfall Shift Target (ST) simulations to probabilistic hydrological ensembles: the Union Jack plot

NO	-50	-40	-30	-20	-10	Ν	10	20	30	40	50	NE
50	0.93					2.87					0.54	50
40		1.25				1.64				1.05		40
30			5.67			1.41			2.65			30
20				2.93		2.09		5.12				20
10					8.12	3.92	7.05					10
0	3.30	1.42	3.22	<u>18.71</u>	<u>16.07</u>	8.18	<u>25.60</u>	11.16	<u>14.28</u>	4.73	5.77	Ε
-10					12.33	6.39	<u>24.63</u>					-10
-20				6.58		8.28		9.53				-20
-30			7.20			6.64			<u>13.44</u>			-30
-40		7.65				8.26				10.21		-40
-50	3.24					4.35					3.09	-50
SO	-50	-40	-30	-20	-10	S	10	20	30	40	50	SE

The values show each peak discharge for the 40 Shift-Target simulations

Key: Not exceeding <u>Exceeding</u> <u>threshold</u>

Exceeding rate:

N

Results – Deterministic (Control Run)

	Basin	Section	Q Observed[m ³ /s]	Warning Threshold[m ³ /s]	Q FEST-WB[m ³ /s]	Q Control Run[m ³ /s]
60		Lozza	57.09	36	<u>54.57</u>	18.06
y 20(Olona	Castellanza	57.04	43	<u>61.64</u>	20.21
.nar	Seveso	Cantù	18.72	13	11.68	5.20
febr	Lombro	Peregallo	68.96	30	<u>70.64</u>	<u>41.76</u>
7	Lambro	Milano	-	-	-	-
6	Olona	Lozza	38.99	36	28.17	26.97
200	Olona	Castellanza	51.14	43	36.23	31.64
- iii	Seveso	Cantù	18.89	13	21.52	12.47
7 ap	Laurahura	Peregallo	49.48	30	19.48	30.00
2	Lambro	Milano	-	-	-	-
6	Olana	Lozza	77.97	36	34.13	1.37
200	Olona	Castellanza	54.59	43	18.94	1.45
15 luglio	Seveso	Cantù	-	-	-	-
	Lambro	Peregallo	-	-	-	-
		Milano	-	-	-	-
10	Olona	Lozza	-	-	-	-
50		Castellanza	-	-	-	-
gust	Seveso	Cantù	15.40	13	10.56	23.17
an	Lambro	Peregallo	145.82	30	<u>108.66</u>	<u>83.38</u>
12		Milano	108.29	83	<u>101.81</u>	<u>87.21</u>
L	Olona	Lozza	-	-	-	-
a c		Castellanza	-	-	-	-
pte 201	Seveso	Cantù	18.25	13	<u>19.22</u>	<u>46.79</u>
8 Se	Lambro	Peregallo	91.56	30	<u>102.25</u>	<u>172.90</u>
Ĥ	Lambro	Milano	117.32	83	<u>112.78</u>	<u>172.82</u>
5	Olona	Lozza	40.35	36	<u>64.77</u>	<u>46.91</u>
nbe 0	Ciona	Castellanza	54.70	43	<u>70.96</u>	<u>54.70</u>
201	Seveso	Cantù	24.86	13	<u>32.43</u>	<u>16.71</u>
T no	Lambro	Peregallo	104.79	30	<u>131.80</u>	<u>34.63</u>
	Lambro	Milano	114.41	83	<u>154.52</u>	51.80
_	Olona	Lozza	-	-	-	-
014	Ciolia	Castellanza	-	-	-	-
lly 2	Seveso	Cantù	48.90	13	<u>34.58</u>	8.18
8 ju	Lambro	Peregallo	102.85	30	<u>146.39</u>	<u>36.61</u>
	Lambro	Milano	101.08	83	<u>144.39</u>	42.46

N

Results – Shift Target (ST) ensemble

	Basin	Section	Q Observed[m ³ /s]	Warning Threshold[m ³ /s]	Q FEST-WB[m ³ /s]	Q Control Run[m ³ /s]	Exceeding % (ST)
60		Lozza	57.09	36	<u>54.57</u>	18.06	7.5%
y 20(Olona	Castellanza	57.04	43	<u>61.64</u>	20.21	10.0%
.nar	Seveso	Cantù	18.72	13	11.68	5.20	25.0%
febr	Lambro	Peregallo	68.96	30	<u>70.64</u>	<u>41.76</u>	72.5%
~		Milano	-	-	-	-	-
6	Olona	Lozza	38.99	36	28.17	26.97	45.0%
200	Ololla	Castellanza	51.14	43	36.23	31.64	40.0%
oril	Seveso	Cantù	18.89	13	<u>21.52</u>	12.47	45.0%
7 aļ	Lambro	Peregallo	49.48	30	19.48	30.00	52.5%
7	Lambro	Milano	-	-	-	-	
6	Olona	Lozza	77.97	36	34.13	1.37	0.0%
15 luglio 200	Ciona	Castellanza	54.59	43	18.94	1.45	0.0%
	Seveso	Cantù	-	-	-	-	
	Lambro	Peregallo	-	-	-	-	-
		Milano	-	-	-	-	-
10	Olona	Lozza	-	-	-	-	-
t 20		Castellanza	-	-	-	-	-
sng	Seveso Lambro	Cantù	15.40	13	10.56	<u>23.17</u>	25.0%
2 au		Peregallo	145.82	30	<u>108.66</u>	83.38	37.5%
÷		Milano	108.29	83	<u>101.81</u>	<u>87.21</u>	22.5%
Je	Olona	Lozza	-	-	-	-	-
o ar		Castellanza	-	-	-	-	-
epto 201	Seveso	Cantù	18.25	13	<u>19.22</u>	46.79	32.5%
18 s	Lambro	Peregallo	91.56	30	<u>102.25</u>	<u>172.90</u>	45.0%
-		Milano	117.32	83	<u>112.78</u>	<u>172.82</u>	30.0%
ъ	Olona	Lozza	40.35	36	<u>64.77</u>	46.91	70.0%
đ oj		Castellanza	54.70	43	<u>70.96</u>	54.70	72.5%
ove 201	Seveso	Cantú	24.86	13	<u>32.43</u>	<u>16.71</u>	62.5%
1 1	Lambro	Peregallo	104.79	30	<u>131.80</u>	34.63	/5.0%
		Milano	114.41	83	<u>154.52</u>	51.80	55.0%
4	Olona	Lozza	-	-	-	-	-
201	Source	Castellanza	-	-	-	-	-
uly	Seveso	Cantu	48.90	13	<u>34.58</u>	8.18	15.0%
8	Lambro	Peregalio	102.85	30	146.39	<u>36.61</u>	32.5%
		iviliano	101.08	83	144.39	42.46	0.0%

Shift Target (ST) ensemble: Union Jack plot, are they useful for civil protection purposes?

25

% Ensemble exceeding the warning threshold			18 September 2010								
		PILB	MPS		Lagged	Sł	Shift Target				
Seveso	Cantù	20%	50%		18%		32.5%				
Laurahura	Peregallo	35%	85%		55%		45.0%				
Lambro	Milano	10%	40%		27%		30.0%				
% Ensemble exceeding the		4		8 Ju	uly 2014						
Warm		PILB	MPS1h	MPS	Lagged1h	Lagged	Shift Target				
Seveso	Cantù	25%	25%	15%	17%	42%	15.0%				
Seveso	Cantù Peregallo	25% 50%	25% 50%	15% 55%	17% 25%	42% 42%	15.0% 32.5%				

- Despite structural measures, flood residual risk in Milan is still very high due to land use change in the past years that lead to an increase of flood frequency. Therefore, there is a need to test non-structural measures as real time flood forecasting systems.
- 2) The multiphysics forecast (MPS) gave better or equal performance to the PILB ensembles.
- 3) Although the physics-based approach needs a high computational cost, it outperforms the pragmatic set of configurations, which, however, turns out to be an acceptable low-budget alternative for real time flood forecasts over small urban basins when a single deterministic run is available.
- 4) Future developments involve the analysis of more events in order to detect if there are some physical schemes more capable than the others in simulating convective/stratiform events in Milan area.

Thank you for your attention

alessandro.ceppi@polimi.it

