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Introduction

High-Dimensional Data Sets
<«Variables / Features—
S e e Issues

1. Curse of dimensionality 1. PCA

2. Computer performance ’

3. Data visualization §> 2.MDS

4. Interpretability of the results

Solutions

3. etc.

<— Instances —

A New Solution

1. The concept of Intrinsic Dimension (ID)

2. The Morisita estimator of ID

3. An ID-based algorithm for selecting the
smallest subset of features conveying all
the information content of a data set
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The Morisita index
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Calculation
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The Morisita Estimator of ID
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The Morisita Estimator of ID
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Calculation

. The concept of ID is extended to
M,=E -5 J non-integer (fractal) dimensions. ’
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ID-based Feature Selection
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ID and Redundancy
Vi and V, are two uniformly distributed variables and one has that:
ID(Vy, Vo) = ID(Vy) + ID(V2) = 1+ 1 =2 (see (A))
ID(Vy, Vo) =~ ID(Vy) =~ ID(V2) ~ 1 (see (B) and (C))
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Redundant features (variables) do not contribute to the data ID
Idea (Traina’s work): select the features which increase the data ID.




ID-based Feature Selection

The Proposed Algorithm

A ={F1,F2,F3,F4} and M2(A) = 2.20
Step 1 Step 2 Step 3

12.20 - Ma(F1)| = 1.20  |2.20 - Ma(F4,F1)| = 1.14 [2.20 - Mo(F4,F3,F1)| = 0.52
2.20 - Ma(F2)| = 1.34 |2.20 - My(F4,F2)| = 0.59 [2.20 - Mx(F4,F3,F2)| = 0.03
[2.20 - Mo(F3)| = 1.30 |2.20 - Ma(F4,F3)| = 0.54
12.20 - Ma(F4)| = 1.19
o [x s -
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Added Features (from left to right)

F1 is redundant, since it hardly contributes to increasing the data ID J
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A Simulated Case Study: the Input Space of the
Butterfly Data Set
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Real Case Studies |

Windspeed: N=127, E=11

ID-based Feature Selection
L o)

Forest Fires: N=2275, E=10
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Permafrost: N=54674, E=24
The data set was kindly provided by Nicola Deluigi
© - ;3 Tpeees e e
awe . .
= ) The information content was asse-
<
E o ssed by means of random forest
™ - /
g /0 All Features Selected Features
£
E * D:> Error rate (%) 14.93 (3.13) 14.40 (2.63)
— - o4 Selected Features
S ) All Features y
© 11X y
TTTTTTTTTT /I\ TTT TTTTTTTTT
%) D009,000 NI >

<«
Added Features (from left to right)




=102

S w
g =
8 )
& [
] IS
3 ©
3 @
= o
3 S
& o
3 S
[a] Yo}

Added Bands (from left to right)

IeS

Hyperspectral Image of Pavia: N

v e z L 0
dl psjewnsy

Real Case Stud




Conclusion

Outline

e Conclusion



Conclusion

Conclusion

Take-Home Message

The concept of Intrinsic Dimension (ID) can help find solutions to the
issues raised by large data sets.
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