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Challenge

How to aggregate votes from non-experts?

We increased the accuracy of “Cropland
Capture” data from 76% to 91%

The Cropland Capture
Land cover map

e any cropland
in the red box?

Improved quality of image dataset;
Improved majority voting estimates;

Benchmarked state-of-the-art
algorithms;

Demonstrated that these algorithms
perform on a par with majority voting.
Explanation: all volunteers are
reliable, the task assignment is highly

Over 5 million HOW? Expert-quality irregular.

opinions from Accuracy is 96% for images with more

than 9 votes.

decisions about

190 000 1mages
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Approach
Data preprocessing Volunteers’ ROCs Benchmark
Individual performance of We compare machine learning
1) Detection of similar images volunteers is studied with respect algorithms  and  state-ot-the-art
using pHash (perceptual to the number of votes [Rayker, vote aggregation algorithms:
EM [Dawid, 1979];
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5 . ] s Table 1: Baseline algorithms
: "7 spimmers 2 0| 7] eimmers Number |Random
% o3 | 3 o | of features| Forest LDA | AdaBoost
skl =11 5 89.92 | 87.60 | 89.15
Feivwrirmirravea B I cinecr e e 1/ | 89.14 | 90.70] 89.92
=> 5% of images are not unique vy (] T 35 88.37 | 89.53 | 91.08

Table 2: Accuracy for ‘crowdsourcing’
algorithms without image-vote threshold-
ing

2) Detection of Ilow quality
images using Blur detection

algorithm [H Tang, 2012].
10% ~30%

iteration MV EM KOS KOS+ we;\z'}{,/ted

Base |89.81|89.81|88.99( 89.81 | 90.63
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Fig. 1: In the figure we use notation introduced in [11]. Threshold = 0, 12, 44 , and J 89.67(89.58(88.17| 89.70 91.22
100 votes. These thresholds leave 1813, 262, 52, and 24 volunteers, respectively. ROCs Table 3: Accuracy for ‘crowdsourcing’ algo-

of spammers lie on the red line. rithms with image-vote thresholding. Only im-

v There dale nNo SpammerS amOng ages with at least 10 votes are left in the expert
0 : dataset. In this case we have 404 images anno-
volunteers with more than 12 tated by 1777 volunteers.
VOteS; iteration MV EM KOS KOS‘/‘ wezghted
v Good volunteers prevail; MV
v Volunt th >100 ¢ H Base [94.55(94.55(94.06| 94.55 | 95.05 I
o oliunteers wi voles show 1 |94.55/94.55(93.81| 94.55 | 95.05 |
2% of images are discarded hlghgr accuracy than any tested 2 ]94.55(94.55(93.81] 94.55 | 95.05 |
algorithm @UOm 7P s vis [ 0505 |




