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models for 300 years, corresponding to five cycles of the forcing
data. As the model solutions exhibit drift below the upper ocean,
this length of integration is clearly too short for investigations
involving deep ocean tracer properties that evolve on long diffusive
time scales. For such studies, longer integrations and/or detrending
of model data may be needed. In contrast, in our experience (as
documented in, e.g., Doney et al., 2007; Lohmann et al., 2009; Yea-
ger et al., 2012), 300-year integration lengths are sufficient for
studies involving, for example, AMOC, subtropical and subpolar
gyres, convection and deep water formation in the North Atlantic,
and upper ocean mean and variability.

To evaluate the degree of equilibrium achieved in the simula-
tions, we use the AMOC annual-mean maximum transport time

series at 26.5!N as our metric (Fig. 1). This latitude is chosen as a
representative latitude as we obtain qualitatively similar results
at several other latitudes – AMOC at 26.5!N will also be used for
comparisons with the RAPID observations (Rapid Climate Change
mooring data, Cunningham et al., 2007) later. Here, we seek to
determine the repeatability of the AMOC time series from one forc-
ing cycle to the next one for each model – except MRI-A because it
was run for only one forcing cycle. This is quantified in Fig. 2 by
considering root-mean-square (rms) differences and correlations
of the AMOC time series of Fig. 1 for each subsequent forcing cycle
pair. Specifically, for each model, we compute rms differences and
correlations between forcing cycles 2 and 1, 3 and 2, 4 and 3, and
finally 5 and 4. The rms measures the differences in the means,

Fig. 1. AMOC annual-mean maximum transport time series at 26.5!N for the entire 300-year integration length. The time series are smoothed using a five-point box car filter.
The repeating 60-year forcing cycle, corresponding to calendar years 1948–2007, is indicated by the dashed lines in each panel.

Fig. 2. Root-mean-square (rms) differences (top panels) and correlations (bottom panels) for the AMOC annual-mean maximum transport time series at 26.5!N between
consecutive forcing cycles. The first ten years of each cycle are excluded from the analysis to avoid large adjustments associated with the jump in forcing from 2007 back to
1948. The MRI-A data assimilation simulation is not included because it is integrated only for one 60-year cycle.
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mooring data, Cunningham et al., 2007) later. Here, we seek to
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‣ Objective:	
  
▪ An	
  extended	
  and	
  improved	
  ocean	
  hindcast	
  simulation	
  for	
  the	
  full	
  20th	
  Century.	
  
▪ Comparison	
  of	
  the	
  20CR	
  and	
  CORE	
  simulations.	
  
▪ Impact	
  of	
  atmospheric	
  forcings	
  and	
  ocean	
  initial	
  state	
  on	
  AMOCs.	
  
▪ Provide	
  full	
  20CR	
  simulations	
  for	
  climate	
  study	
  and	
  prediction.
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models for 300 years, corresponding to five cycles of the forcing
data. As the model solutions exhibit drift below the upper ocean,
this length of integration is clearly too short for investigations
involving deep ocean tracer properties that evolve on long diffusive
time scales. For such studies, longer integrations and/or detrending
of model data may be needed. In contrast, in our experience (as
documented in, e.g., Doney et al., 2007; Lohmann et al., 2009; Yea-
ger et al., 2012), 300-year integration lengths are sufficient for
studies involving, for example, AMOC, subtropical and subpolar
gyres, convection and deep water formation in the North Atlantic,
and upper ocean mean and variability.

To evaluate the degree of equilibrium achieved in the simula-
tions, we use the AMOC annual-mean maximum transport time

series at 26.5!N as our metric (Fig. 1). This latitude is chosen as a
representative latitude as we obtain qualitatively similar results
at several other latitudes – AMOC at 26.5!N will also be used for
comparisons with the RAPID observations (Rapid Climate Change
mooring data, Cunningham et al., 2007) later. Here, we seek to
determine the repeatability of the AMOC time series from one forc-
ing cycle to the next one for each model – except MRI-A because it
was run for only one forcing cycle. This is quantified in Fig. 2 by
considering root-mean-square (rms) differences and correlations
of the AMOC time series of Fig. 1 for each subsequent forcing cycle
pair. Specifically, for each model, we compute rms differences and
correlations between forcing cycles 2 and 1, 3 and 2, 4 and 3, and
finally 5 and 4. The rms measures the differences in the means,
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2,	
  Model,	
  Atmospheric	
  Forcing	
  and	
  	
  Experiments

▪ Model:	
  NorESM	
  
– 	
  MICOM	
  +	
  CICE	
  
– 1o	
  zonal	
  resolution  
!

▪ Atmospheric	
  Forcings	
  
– CORE.v2:	
  1948-­‐2009	
  
– 20CRadj:	
  1871-­‐2009

▪ Hindcast	
  (ctrl)	
  simulations	
  
– CORE	
  run:	
  1948-­‐2009	
  
– 20CR	
  run:	
  1871-­‐2009, 
!

▪ Sensitivity	
  experiments	
  
– Different	
  atmospheric	
  forcings	
  
– Different	
  initial	
  ocean	
  states

*Full	
  descriptions	
  of	
  the	
  20CRadj	
  are	
  provided	
  in	
  He	
  et	
  al.,	
  Ocean	
  Modelling,	
  2016.
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3,	
  Simulated	
  evolution	
  of	
  AMOC	
  with	
  CORE	
  and	
  20CRadj

• 5	
  (10)	
  cycles	
  for	
  20CR	
  and	
  CORE	
  simulations	
  
• Long-­‐term	
  	
  increasing	
  trend	
  of	
  AMOC	
  for	
  the	
  first	
  three	
  cycles	
  	
  
• The	
  last	
  two	
  cycles	
  of	
  each	
  simulation	
  have	
  small	
  differences	
  
• The	
  last	
  cycle	
  gives	
  a	
  stable	
  AMOC
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Conclusions:	
  

• Initial	
  condition	
  contributes	
  2	
  Sv.	
  

• Atmospheric	
  forcing	
  contributes	
  4	
  Sv:	
  
wind	
  and	
  air	
  temperature	
  

• Initial	
  state	
  determines	
  the	
  AMOC	
  
strength	
  while	
  atmospheric	
  forcing	
  
determines	
  the	
  variability	
  of	
  AMOC	
  

• Cyclic	
  spin-­‐up	
  procedure	
  leads	
  to	
  a	
  
spurious	
  drift	
  in	
  AMOC	
  during	
  the	
  first	
  
20	
  years. 5
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Summary	
  
• An	
  adjusted	
  version	
  of	
  the	
  Twentieth	
  Century	
  Reanalysis	
  (20CRv2)	
  is	
  
constructed.	
  

• Model	
  forced	
  by	
  20CRadj	
  gives	
  a	
  stable	
  Atlantic	
  Meridional	
  
Overturning	
  Circulation	
  (AMOC).	
  

• Differences	
  in	
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Thank you!

The	
  20CR	
  simulation	
  data	
  are	
  freely	
  available	
  upon	
  request.


