
6. Validation and Forecasting Results

5. Development of Realistic BEC
The capital region of South Korea is selected for the present data

assimilation study because measurement sites are relatively evenly distributed.

3. Experimental Design

Simple yet popular covariance model is Balgovind functions expressed as:

4. Idealized BEC Results

This experiment is used to evaluate the characteristics of the BEC based on a
single observation experiment. In this experiment, 100 ppb of O3 was
incorporated as an arbitrary value rather than actual observation data at the
initial time at the center of the model domain.

At the model grid point (29, 31), where arbitrary observation data were
applied, all three tests showed an O3 increment of about 50.0 ppb. The
background concentration of O3 at the grid was 40.1 ppb, but the value was
up to about 90 ppb in the analysis when the synthetic observation of 100
ppb was applied. However, as the value of L increased, the O3 increment in
the analysis occurs at more surrounding grids. These results indicate that the
idealized BEC performs well in the revised codes, and proper analysis
increments can be achieved when the spatial correlation is taken into account.

The BEC is obtained using the NMC approach, which is based on a real
simulation for the realistic 4D-Var data assimilation study. The error statistics
for the CMAQ model is defined by the differences between +48 hours and

+24 hours forecast, 𝝐𝝐𝑖𝑖 = 𝒄𝒄+48ℎ𝑖𝑖 − 𝒄𝒄+24ℎ𝑖𝑖 . We assume 𝐁𝐁 can be written as 𝐁𝐁 =
𝐗𝐗⊗ 𝐘𝐘⊗ 𝐙𝐙⊗ 𝐂𝐂 where, 𝐗𝐗, 𝐘𝐘, and 𝐙𝐙 representing the error correlation in the
three directions. 𝐂𝐂 is the error covariance matrix at a single grid point that
refers to the error variances and correlation between different species. In this
study, 𝐂𝐂 is considered to be no correlation between the species. It seems to
be error-prone to invert ill-conditioned matrices. Based on the property of
Kronecker product, 𝐁𝐁−𝟏𝟏 can be expressed as 𝐁𝐁−𝟏𝟏 = (𝐗𝐗⊗ 𝐘𝐘⊗ 𝐙𝐙)−𝟏𝟏= 𝐗𝐗−𝟏𝟏 ⊗
𝐘𝐘−𝟏𝟏 ⊗ 𝐙𝐙−𝟏𝟏. Singular Value Decomposition (SVD) is applied to 𝐁𝐁 matrix.

The correlation coefficient for the east-west direction is somewhat higher
than that for the south-north direction.
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1. Introduction
Data assimilation (DA) provides a consistent representation of the physical

state by blending imperfect model predictions and noisy observations. With

more chemical observations available in recent years data assimilation is

expected to improve the predictability of air quality.

 One of the important elements affecting results of data assimilation in the

4D-Var process is the background error covariance (BEC) of the model.

 In this study, the previously developed 4D-Var code has been modified to

treat background errors in matrix forms, and various numerical tests have

been conducted.

 Characteristics of the background errors obtained through long-term

modeling results are analyzed. Also, the predictability of high ozone

concentration was investigated.

In the maximum likelihood approach, the 4D-Var data assimilation gives the

maximum a posteriori estimator of the true initial concentration distribution,

which is obtained by minimizing the cost function:
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The 4D-Var analysis can be obtained by the initial concentration that

minimizes (1) with respect to the model equation. Formally, a gradient-based

optimization procedure is used to obtain minimum value. Assuming a linear

observation operator 𝐇𝐇𝑘𝑘 = ℋ′(𝒄𝒄𝑡𝑡), the gradient of (1) with respect to 𝒄𝒄0 is
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The gradient for the 4D-Var cost function can be effectively obtained by

forcing the adjoint model with observation increments and calculating it

backwards. When the forward and reverse adjoint models are performed, it

results in the problem of solving the following equation:

𝛻𝛻𝒄𝒄0𝒥𝒥 𝒄𝒄0 = 𝐁𝐁0−1 𝒄𝒄0 − 𝒄𝒄0𝑏𝑏 + 𝝀𝝀0 = 0.
𝝀𝝀0 is the sensitivity of the cost function (1) with respect to the initial

concentration 𝒄𝒄0. Since 𝐁𝐁0−1, 𝒄𝒄0𝑏𝑏, and 𝝀𝝀0 values are known, if the value of 𝒄𝒄0
that satisfies equation (3) is found, it becomes the analysis field 𝒄𝒄0𝑎𝑎.

The adjoint code for CMAQ (CMAQ-ADJ) model was implemented from the

project H98 (University of Huston, 2009) by Huston Advanced Research

Center / Texas Environmental Research Consortium (HARC/TERC). The

validation and several numerical tests of this code are well described in

Hakami et al. (2007). This model only considers the model and observation

errors as its variance, i.e. a constant value of 𝜎𝜎0𝐵𝐵 and 𝜎𝜎𝑘𝑘𝑜𝑜𝑏𝑏𝑜𝑜 with Gaussian

distribution.
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2. 4D-Var Data Assimilation

(1)

(2)

(3)

WRF d27 d09 d03
Horizontal grid 123 × 130 72 × 84 65 × 68
Grid resolution 27 km 9 km 3 km
Vertical layers 33 layers (top: 50 hPa)

Physical
options

WSM5 scheme, Kain-Fritsch scheme,
Noah LSM, Yonsei University PBL,

RRTM Longwave, Dudhia Shortwave
Initial data NCEP FNL data

Time period 00 UTC 03 August ~ 00 UTC 07 August, 2008

Table 1. Configuration of WRF modeling system

CMAQ d27 d09 d03
Meteorological input correspond to each WRF domain

Horizontal grid 118 × 125 67 × 79 60 × 63
Grid resolution 27 km 9 km 3 km
Vertical layers 15 layers (top: 20 km)
Emission data INTEX-B CAPSS CAPSS

Time
periods

Forward (FWD) 00 UTC 03 ~ 00 UTC 07 August, 2008 (4 days)

4D-Var
(4DV)

day
time

00 UTC 05 ~ 12 UTC 05 August, 2008 (analysis)
12 UTC 05 ~ 12 UTC 06 August, 2008 (forecast)

night
time

12 UTC 05 ~ 00 UTC 06 August, 2008 (analysis)
00 UTC 06 ~ 00 UTC 07 August, 2008 (forecast)

Table 2. Configuration of CMAQ 4D-Var modeling system

Figure 1. The model domains for WRF and CMAQ. The
air quality monitoring sites at ground level are marked
by green blank circles.
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Figure 4. Cross-section of analysis increments
along the blue line in Figure 6. (b) as the radius
of influence (L) values are increase.

Figure 3. Horizontal distribution of analysis increments at surface resulted from the
single observation experiment with respect to radius of influence (L).

Figure 2. Covariance distribution for Balgovind functions with respect
to the grid distance (r) and the values of radius of influence (L).

Table 3. Experimental design for the idealized 
background error covariance test.

Figure 5. Model error correlation coefficients (a) between vertical levels and
(b) between two layers as a function of Δz. The fitted line is 𝑅𝑅 =
𝑒𝑒𝑒𝑒𝑒𝑒(−𝛥𝛥𝛥𝛥1.2/𝑙𝑙𝑧𝑧

1.2), where 𝑙𝑙𝑧𝑧=300 m.

(b)

The 4DV experiment shows a diurnal variation of O3 concentration that
conforms well to the observation. RMSE decreases by about 49.4%, and the
IOA increases by 59.9%, suggesting that the initial conditions of ozone
concentration are successfully improved by application of DA.

A potential improvement for the ozone predictability is presented using the
optimized initial condition after the time-window. In particular, a larger
improvement in the predictability of daytime ozone concentration is expected if
DA is performed over the nighttime than in the daytime.

Figure 7. Horizontal distributions of surface ozone
and its time variations.

Figure 8. Time variations of surface ozone concentration at
selected sites.
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Figure 9. Time variations of observed and forecast ozone
concentration after (a) daytime and (b) nighttime assimilation.

Figure 10. Time variations of RMSE and IOA for 24 h forecast
after (a) daytime and (b) nighttime assimilation.
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Figure 6. The error correlation as a function of
horizontal distance Δx or Δy. The red line
corresponds to 𝑅𝑅 = 𝑒𝑒𝑒𝑒𝑒𝑒(−𝛥𝛥ℎ1.0/𝑙𝑙ℎ

1.0) ,
where 𝑙𝑙ℎ=10 km.
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