

Rheologic effects of Crystal Preferred Orientation in upper

mantle flow near plate

boundaries

Donna Blackman, Olivier Castelnau Don Boyce, Paul Dawson

Goal- are fully-coupled models of mantle flow & microstructural (CPO) evolution required?

Motivation- understand regional flow patterns and processes

>>> improve interpretation

of seismic anisotropy

spreading

Linked Micro-Macro Numerical Modeling

- Compute regional mantle flow field using *Isaiah*Cornell 3D parallel FEM: deformation in Eulerian frame, coupled flow & temperature fields
- Calculate velocity gradient tensor along streamlines ending at all elements
- Calculate CPO at each element using Second Order Self Consistent scheme Castelnau et al. (JGR 2008; GRL 2009); 1000-grain polycrystals, dislocation glide dominant
- Determine effective viscosity tensor for polycrystal at each element specify stress:strain-rate behavior of polycrystal (linear vs power law n=2-3)
- Re-compute flow field using updated anisotropic viscosity tensor (V_{ijkl})
- Iterate (flow, V_{iikl} stabilize), compute seismic anisotropy

Flow-Induced Crystal Preferred Orientation

B-1, n=1, intermediate coupling (it1) Pole Figures (100)

Flow-Induced Crystal Preferred Orientation

Viscosity Tensor

$$\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{13} \\ \sigma_{12} \end{bmatrix} = \begin{bmatrix} V_{1111} & V_{1122} & V_{1133} & V_{1123} & V_{1113} & V_{1112} \\ V_{2211} & V_{2222} & V_{2233} & V_{2223} & V_{2213} & V_{2212} \\ V_{3311} & V_{3322} & V_{3333} & V_{3323} & V_{3313} & V_{3312} \\ V_{2311} & V_{2322} & V_{2333} & V_{2323} & V_{2313} & V_{2312} \\ V_{1311} & V_{1322} & V_{1333} & V_{1323} & V_{1313} & V_{1312} \\ V_{1211} & V_{1222} & V_{1233} & V_{1223} & V_{1113} & V_{1212} \end{bmatrix} \begin{bmatrix} \dot{e}_{11} \\ \dot{e}_{22} \\ \dot{e}_{33} \\ 2\dot{e}_{23} \\ 2\dot{e}_{13} \\ 2\dot{e}_{12} \end{bmatrix}$$

calculate polycrystal strain rate (ė) response to applied stress (σ)

polycrystal has CPO that evolved along flowline to element

flow is 2-D, although model & texturing are calculated in 3-D

6 independent V_{ijkl} components

x: spreading direction (1)

z: vertical (3)

y: 1 to plane (2)

Coupled flow/CPO Result

Predicted Seismic Anistropy

Predicted Seismic Anistropy

compare linear & power law cases, intermediate coupling

>> anisotropy a few percent stronger in flow 'corner', seismic effects modest

Coupled flow, power law polycrystal

n=1 it1

Variation of V_{ijkl} Between Models

scaled by isotropic value, green \sim isotropic color scale constant for a given V_{ijkl} component

Summary

- Fully-coupled micro-macro scale modeling is possible

 Linear, low resolution runs 10-12 hrs each model iteration— <u>full_streamlines</u> (<u>sl</u>), single processor
- Flow field & anisotropy are affected by CPO rheologic feedback
 Linear case— modest differences relative to isotropic V_{ijkl} intermediate coupling case
 Power law case— more notable differences: off axis anisotropy is stronger & extends deeper below lithosphere, increased shallow anisotropy rotates to horizontal, subaxial zone reduction for B-1
 Magnitude of difference off axis is seismically detectable (need larger model space to quantify)
- Computational implications of (more realistic) power law polycrystal behavior
 major increase in convergence time for CPO evolution & viscosity tensor calculation
 >> multi-processor, high-speed computing required for further work, update sl from last element
- Details of axial lithosphere will influence shallow results

