Rheologic effects of **Crystal Preferred Orientation** in upper mantle flow near plate boundaries

Donna Blackman, Olivier Castelnau
Don Boyce, Paul Dawson

Goal- are fully-coupled models of mantle flow & microstructural (CPO) evolution required?

Motivation- understand regional flow patterns and processes

>>> improve interpretation of seismic anisotropy
Linked Micro-Macro Numerical Modeling

- Compute regional mantle flow field using **Isaiah**

 Cornell 3D parallel FEM: deformation in Eulerian frame, coupled flow & temperature fields

- Calculate velocity gradient tensor along streamlines ending at all elements

- Calculate CPO at each element using Second Order Self Consistent scheme

 Castelnau et al. (JGR 2008; GRL 2009); 1000-grain polycrystals, dislocation glide dominant

- Determine effective viscosity tensor for polycrystal at each element

 specify stress:strain-rate behavior of polycrystal (linear vs power law n=2-3)

- Re-compute flow field using updated anisotropic viscosity tensor \((V_{ijkl})\)

- Iterate (flow, \(V_{ijkl}\) stabilize), compute seismic anisotropy

Dislocation slip systems for Olivine crystals

<table>
<thead>
<tr>
<th>Slip system</th>
<th>Reference stress (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(010)[100]</td>
<td>(5.5 \times 10^{-4})</td>
</tr>
<tr>
<td>(001)[100]</td>
<td>(5.5 \times 10^{-4})</td>
</tr>
<tr>
<td>(010)[001]</td>
<td>(5.5 \times 10^{-3})</td>
</tr>
<tr>
<td>{101} < {101}</td>
<td>(5.5 \times 10^{-2})</td>
</tr>
</tbody>
</table>

4th ‘hard’ system allows general deformation
Flow-Induced Crystal Preferred Orientation

BCs: top velocity = Spreading Rate (SR)
- horizontal gradients zero at spreading axis
- stress-free base
- only horizontal flow out of right side

CPO random at base of model

Temperature = 0

10 mm/yr

lithosphere viscosity scaled by 10^3

T = 1300°C
Flow-Induced Crystal Preferred Orientation

B-1, n=1, intermediate coupling (it1)
Pole Figures (100)

CPO random at base of model

Spreading Rate (SR)
10 mm/yr

Lithosphere Base (1000°C)
Viscosity Tensor

calculate polycrystal strain rate ($\dot{\epsilon}$) response to applied stress (σ)

polycrystal has CPO that evolved along flowline to element

flow is 2-D, although model & texturing are calculated in 3-D

6 independent V_{ijkl} components

x: spreading direction (1)
z: vertical (3)
y: \perp to plane (2)
Coupled flow/CPO Result

B-1, n=1, iteration 15 (it15s)
Pole Figures (100)

Lithosphere Base (1000°C)

J Index
Compare CPO, flowlines & flow velocities

n=1, iteration 15
Predicted Seismic Anisotropy

Linear (n=1) case

P-wave

- Isotropic V^ijkl_{ijkl}
- Iteration 15 V^ijkl_{ijkl}

S-wave

- Isotropic
- Iteration 15

- Total split (sec)
- Local split (sec)
- Incidence Angle = 20°
Predicted Seismic Anisotropy

compare linear & power law cases, intermediate coupling

>> anisotropy a few percent stronger in flow ‘corner’, seismic effects modest
Coupled flow, power law polycrystal
Variation of V_{ijkl} Between Models

scaled by isotropic value, green \sim isotropic

color scale constant for a given V_{ijkl} component
Summary

- Fully-coupled micro-macro scale modeling is possible

 Linear, low resolution runs 10-12 hrs each model iteration — full streamlines (sl), single processor

- Flow field & anisotropy are affected by CPO rheologic feedback

 Linear case — modest differences relative to isotropic V_{ijkl} intermediate coupling case

 Power law case — more notable differences: off axis anisotropy is stronger & extends deeper below lithosphere, increased shallow anisotropy rotates to horizontal, subaxial zone reduction for B-1

 Magnitude of difference off axis is seismically detectable (need larger model space to quantify)

- Computational implications of (more realistic) power law polycrystal behavior

 Major increase in convergence time for CPO evolution & viscosity tensor calculation

 $>>$ multi-processor, high-speed computing required for further work, update sl from last element

- Details of axial lithosphere will influence shallow results