

INTERACTION OF AN AXISYMMETRIC TURBULENT JET WITH A THERMOCLINE EKATERINA EZHOVA¹, CLAUDIA CENEDESE² AND LUCA BRANDT¹ $\}$ ¹LINNÉ FLOW CENTRE AND SERC, KTH MECHANICS, STOCKHOLM, SWEDEN ² Physical Oceanography Department, Woods Hole Oceanographic Institution, USA

- [2] P. F. Fischer et al., 2008. http://nek5000.mcs.anl.gov.
- A.B. Shrinivas and G.R. Hunt. J. Fluid Mech., 757:573–598, 2014.

OBJECTIVES

We investigate the interaction of a turbulent jet with a thermocline by means of LES.

- 1. Validation of a LES model (dynamic Smagorinsky) in Nek5000 [2] for a turbulent jet in homogeneous and stratified fluid.
- 2. Investigation of jet dynamics in a stratified fluid: mean penetration height through the thermocline.
- 3. Turbulent stratified entrainment.
- 4. Generation of internal waves: jet oscillations and internal waves spectra, comparison with the experiment.

2 ET IN A STRATIFIED FLUID

Navier-Stokes equations with Boussinesq approximation

$\frac{\partial u_i}{\partial t}$	$+ u_j \frac{\partial u_i}{\partial x_j} = -$	$-\frac{\partial p}{\partial x_i} +$	$-\frac{1}{Re}\frac{\partial^2 u_i}{\partial x_j^2}$	$+ \frac{(T - T'_s)\delta}{Fr^2}$	$\frac{\partial \overline{\partial z}}{\partial x_i} - \frac{1}{Re} \frac{\partial \overline{\tau_{ij}}}{\partial x_j}$
	$\frac{\partial T}{\partial t} + u_j \frac{\partial T}{\partial x_j}$	$\frac{1}{j} = \frac{1}{Re}$	$\frac{1}{Pr} \frac{\partial^2 T}{\partial x_j^2} -$	$\frac{1}{Re} \frac{\partial \Theta_j}{\partial x_j},$	$\frac{\partial u_i}{\partial x_i} = 0.$

- Profile of stratification: $T'_s = \frac{1}{2}(1 + \tanh(\gamma(z z_0)))$
- Jet temperature at the inflow is equal to ambient
- Side: Open boundary conditions + sponge on the lateral sides • Top: Open boundary condition

Range of parameters: 1. Froude number: $7 < Fr = U_0 / \sqrt{g' D_0} < 22$ (at the thermocline entrance $0.6 < Fr_t < 1.9$)

2. Thermocline thickness versus jet diameter in the thermocline: thin thermocline: jet diameter is ~4 times larger ($\gamma = 2, z_0 = 20.5$), thick thermocline: of the same order ($\gamma = D_0/H = 0.5, z_0 = 22$).

Entrainment coefficient $E_i = Q_e/Q_i$ (entrained-to-inflow ratio) in the thin thermocline is in agreement with the theory for a two-layer stratified fluid [3]

FUTURE RESEARCH

We perform LES of turbulent buoyant plumes in real winter and summer stratifications in a typical Greenland fjord modelling subglacial discharge.

We focus on the dynamics of plumes, investigate turbulent entrainment and internal waves for various discharge distribution.

(g) Mean jet penetration: LES results versus theory **Theory:** from the conservation of source energy at the thermocline :

$$\frac{1}{2} \sim \int_0^{h_z^*} ga_T (T - T_s) dz, \quad (\frac{\lambda u_m}{U_0})^2 \frac{Fr^2}{2} = \int_0^{h_z} T'_s dz$$
$$\lambda = 0.8 \text{ from the best fit of the LES data.}$$

Good correspondence between LES and theory

CONCLUSION

- nesses
- mocline.

CONTACT INFORMATION

E-mail: eezhova@mech.kth.se

Amplitudes of jet oscillations and internal waves versus Fr_t . Red curve is the stationary solu-

Self-sustained regime of jet

• We performed LES of a turbulent jet in a stratified fluid with thermocline of different thick-

• The mean penetration height follows from the conservation of the source energy at the ther-

• Jet penetrating through the thick thermocline entrains colder fluid from the sides, not from the upper stratification layer.

• The frequencies of the jet oscillations are the same at fixed Froude number while the frequencies of internal waves are different.