CO and H₂ uptake and emission by soil variability of fluxes from long term soil chamber measurements

M. E. Popa, M. Bolder, C. van der Veen, H. Snellen, T. Röckmann

IMAU, Utrecht University, the Netherlands

The idea

What we wanted

To study the soil uptake and release of H₂ and CO

- magnitude
- spatial and temporal variability
- dependence on environmental variables

What we did

Long term in-situ measurements with a soil chamber

- high temporal resolution
- various conditions (e.g. temperature, soil moisture)
- different measurement locations
- long term seasons

The idea

- Variability: time, place
- Influence factors

Uptake and emission fluxes

Note: we always find concurrent uptake and emission

Contents

- Intro
- <u>Methods</u>
- <u>Results</u>
- <u>Summary</u>

Intro: H₂ and CO

- indirect greenhouse gases
- taken up by soil (microbes)
- emitted by soil
- atm. $H_2 = 500 \text{ ppb}$
- atm. CO = 100 ppb
- can be measured together with an RGA

Sources

- Industry
- Biomass burning
- CH₄, NMHC oxidation
- ocean, soil

Sinks

- Reaction with OH
- Soil uptake

Intro: H₂ and CO exchange with soil

H₂ exchange with soil

- uptake: microbial (75% of the global sink)
- emission: microbial (4% of global source)
 - → emitted by e.g. N₂-fixing bacteria living in symbiosis with legumes (e.g. clover) – more info

CO exchange with soil

- uptake: microbial (10% of the global sink)
- **emission: abiotic** (3% of global source)
 - \rightarrow thermal or photo- degradation of organic matter

Methods

go to:

- Sampling sites
- <u>Automatic measurements</u>
- <u>H₂ and CO analysis</u>
- Measurement sequence
- Flux calculation

Methods: Sampling sites

Back to Methods

Three data subsets

- Cabauw 2011: Jul Oct (2 locations)
- Cabauw 2012: Apr Jul
- Speuld 2012: Aug Dec

Methods: Automatic measurements

Gases: calibration, target

H₂ and CO analyzer (PP1)

Methods: H₂ and CO analysis

Peak Performer PP1 analyser (gas chromatograph) PeakSimple software

- 1 measurement = 4 min
- air dried (Nafion)
- **precision 1 ppb** or better for both H₂ and CO

Back to

Methods

- strong dependence on temperature
 - \rightarrow corrected
- calibrated daily with 2 gas cylinders
- Target gas frequently
- nonlinearity corrected
- memory effects (incomplete line flushing?)
 → corrected

Methods: Measurement sequence

Automatic chamber with two positions

Back to Methods

→ this is how the measurement looks like (raw data):

10 x Box 1 - 2 x Target - 10 x Box 2 - 2 x Target.....

Methods: Flux calculation

Soil chamber closed → evolution of mole fraction

Back to Methods

• Flux = Source + Sink (g

(see why we assume this)

- p = production rate
- k = uptake rate

Methods: Flux calculation

Flux = Source + Sink (see why we assume this)

Back to Methods

dc/dt = p - kc

- integrate \rightarrow c(t) = (ci ce) exp (-kt) + ce
- fit to meas. \rightarrow ce, k
- calculate $\rightarrow p = k ce$
 - → We obtain p and k (production and uptake rates) for each soil chamber closing (every ~ 40 min)

p = gross production rate

k = gross uptake rate

ci = initial concentration

ce = equilibrium concentration

Results

go to

- <u>H₂ mole fractions</u>
- <u>H₂ fluxes</u>
- <u>CO mole fractions</u>
- <u>CO fluxes</u>
- <u>Correlation of CO and H₂ fluxes</u>

Results: H₂ mole fractions

- data Cabauw, 2011
- two chamber positions (boxes)
- chamber location 1 (explain)

Time (few hours)

EGU 2016

Back to Results

Results: H₂ mole fractions

- data Cabauw, 2011
- two chamber positions (boxes)
- chamber location 1 (explain)

 Net H₂ emission! – vegetation = glass + clover (see explanation)

- Spatial variability large difference between the two boxes 1 m apart
- diurnal variations emission larger during day
- synoptic variations increase with air / soil temperature

EGU 2016

Back to Results

Results: H₂ mole fractions

- data Cabauw, 2011
- Sep-11 moved chamber by a few m, no more clover

Back to

Results

Results: H₂ fluxes

Concurrent uptake and emission fluxes calculated as shown in methods (go there)

Back to Results

- spatial variability large difference over few meters
- synoptic variations changes with air / soil temperature;
- soil flooded → uptake stops, emission not
- cold season → uptake does not stop

Results: CO mole fractions

data Cabauw, 2011

Net flux: uptake during night, often emission during day

 \rightarrow light induced emission from organic matter

Back to Results

Results: CO fluxes

Concurrent uptake and emission fluxes calculated as shown in methods (go there)

Results: CO fluxes

Concurrent uptake and emission fluxes calculated as shown in methods (go there)

- spatial variability not very large
- synoptic variations changes with air / soil temperature;
- day / night variability larger than the long term
- soil flooded → uptake stops, emission not
- cold season → uptake does not stop

Results: Correlation of CO and H₂ fluxes

Example: data from one soil box, one location

data Cabauw, 2011

Results: Correlation of CO and H₂ fluxes

Example: all data from Cabauw 2011

The colors correspond to different chamber positions, see here

Back to Results

Deposition velocity: all data seem to sit close to the same line

• Emission fluxes of H2 and CO correlated, but differently for each subsite

Summary

- We can compute the gross uptake and emission fluxes (assuming first order uptake, zero order emission)
- Always both uptake and emission
- H₂ fluxes large variability in both time and space
 → upscaling will be difficult!
- H₂ net emission when clover present (N2 fixation)
- **CO fluxes** less variable in space than H₂
- CO net emission during day (photo-emission from organic matter)
- CO and H₂ fluxes correlated
- **forest site Speuld** (data not shown) \rightarrow always strong uptake

Note: work in progress

From here: More info

soil chamber at Cabauw seen from the Cabauw tower (200m)

More info: measurements

RGA

- carrier gas: Zero air
- memory effects (incomplete flushing?) stronger for CO → corrected

Additional measurements

- soil moisture and temperature
- analyzer box temperature (for temperature correction)

More info: concurrent source and sink

We assume that we always have **concurrent source and sink**, based on:

- **Mole fraction** evolution—e.g., the mole fraction does not decrease to zero when the net flux is uptake
- Isotope evolution: additional measurements of CO and H₂ stable isotope (in flask sampled from the soil chamber) indicate the presence of both source and sink

- H_2 isotope results published: Chen et al., 2015: Isotopic signatures of production and uptake of H_2 by soil

- for CO isotopes, paper in preparation (Popa et al)

More info: Atmospheric N₂ fixation

Symbiosis: plant (legume) – bacteria (Rhizobium)

More info: detail CO fluxes

data: 25 - 26-Sep-2011, Cabauw

Back

More info: soil chamber positions CBW 2011

Soil chamber position at Cabauw in 2011: the chamber was moved by about 2 m in Sep-2011; the colors correspond to data plots through the presentation.

Back to

H2 mole

fractions