Isotopic signatures of H₂ and CO uptake and emissions by soil

M. E. Popa¹, Q. Chen^{1,2}, T. Röckmann¹

¹IMAU, Utrecht University, the Netherlands

² Department of Atmospheric Sciences, University of Washington, USA

Intro: H₂ and CO

- atm. $H_2 = 500 \text{ ppb}$
- atm. CO = 100 ppb
- indirect greenhouse gases
- taken up by soil (microbes)
- emitted by soil

Sources

- Industry
- Biomass burning
- CH₄, NMHC oxidation
- ocean, soil

Sinks

- Reaction with OH
- Soil uptake

Intro: H₂ and CO exchange with soil

H₂ exchange with soil

- Uptake: microbial 75% of global sink
- **Emission: microbial** 4% of global source
 - → emitted by e.g. N₂-fixing bacteria living in symbiosis with legumes (e.g. clover)

CO exchange with soil

- Uptake: microbial 10% of global sink
- **Emission: abiotic** 3% of global source
 - \rightarrow thermal or photo- degradation of organic matter

Methods: Sampling sites

Methods: Sampling

Methods: Calculation

- integrate \rightarrow c(t) = (ci ce) exp (-kt) + ce
- fit to meas. \rightarrow ce, k
- calculate $\rightarrow p = k ce$
- → We obtain p and k (emission and uptake rates)

Methods: Calculation (example H₂)

$$k_{HH}$$
, k_{HD} → Fractionation during uptake: $\alpha = k_{HD} / k_{HH}$
 $ε = α - 1$
 $\delta D = (p_{HD} / p_{HH})/R_{ref} - 1$

EGU 2016

p = gross emission rate

k = gross uptake rate

Results: H₂ isotopes

Q. Chen et al., 2015: Isotopic signatures of production and uptake of H₂ by soil

1. Soil uptake fractionation

 $\alpha_{soil} = k_{HD}/k_{HH} = 0.945$

 \rightarrow no difference between grassland and forest sites

- \rightarrow no dependence on deposition velocity
- → α_{soil} similar to previous studies in US
 (Gerst & Quay, 2001; Rahn et al., 2002; Rice et al., 2011)
- \rightarrow for comparison: $\alpha_{H2+OH} = 0.57$ (Talukdar et al., 1996)

Q. Chen et al., 2015: Isotopic signatures of production and uptake of H₂ by soil

Results: H₂ isotopes

2. Soil source signature

 $\delta D_{soil} = (-530 \pm 40) \%$

 \rightarrow less negative than expected

For comparison

- measured microbial H₂ -570 ... 650
 (Luo et al., 1991; Walter et al., 2012)
- isotopic equilibrium with water -700

Q. Chen et al., 2015: Isotopic signatures of production and uptake of H₂ by soil

Results: CO isotopes

Samples only from Speuld

2012: CO and H₂ isotopes 2014: and CO₂ isotopes

CO in flask unstable

 \rightarrow get more samples, 2016

Results: CO soil uptake fractionation

$\epsilon^{13}C = (k^{13}C/k^{12}C - 1) = \alpha - 1$

¹ from Roeckmann et al., 1998; Stevens and Wagner, 1989

Results: CO source signature

 $δ^{13}$ C median = -34.6 ‰ (VPDB) $δ^{18}$ O median = +17.2 ‰ (VSMOW)

Soil emission = large variability

- ¹³C, ¹⁸O strongly depleted relative to C and O source
- \rightarrow fractionation during CO production
- large effect on atmospheric CO

Summary

• H₂ soil uptake fractionation

• H2 soil emission signature

$$\alpha_{soil} = 0.945 \pm 0.004$$

 $\delta D_{soil} = (-530 \pm 40) \%$

 ε^{13} C median = -9.5 ‰

ε¹⁸O median = -14 ‰

CO soil emission signature

 δ^{13} C median = -34.6 ‰

 $δ^{18}$ O median = +17.2 ‰

Thank you

More results: Always source AND sink

Rayleigh fractionation plot

Rayleigh plot

 \rightarrow should be linear, if only sink (slope = fractionation)

 \rightarrow NOT linear \rightarrow SOURCE present !

More info: concurrent source and sink

We assume that we always have **concurrent source and sink**, based on:

- **Mole fraction** evolution—e.g., the mole fraction does not decrease to zero when the net flux is uptake
- Isotope evolution: additional measurements of CO and H₂ stable isotope (in flask sampled from the soil chamber) indicate the presence of both source and sink
 - H₂ isotope results published: Chen et al., 2015: Isotopic signatures of production and uptake of H₂ by soil
 - for CO isotopes, paper in preparation (Popa et al)

More info: Atmospheric N₂ fixation

Symbiosis: plant (legume) – bacteria (Rhizobium)

More info: Mole fraction evolution

More info: CO isotope measurements

Atmospheric air: $CO_2 = 400$ ppm, CO = 0.1 ppm

More info – Work on CO isotopes

Vehicle emissions

- tunnel: Popa 2014
- individual veh. ongoing, Stijn

Plant emissions

- ongoing, Sem, Selma

Reactor – chemistry

- CO + OH
- CH4, NMHC \rightarrow Form \rightarrow CO, H2

Soil exchange

- student, summer 2016

Sampling

- Cabauw
- Korea (starting)
- Amazon (future)

Continuous measurements IMAU CO-iso, H2:CO, CH4, CO2