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1. Motivation 4. DSL uncertainty continued " -
As global average sea-level (GSL) rises in the early part of this century (Nerem et al. 2010) In certain locations, the ensemble of projected
there is great interest in how much global and regional (relative) sea level (RSL) will change in DSL does not conform to a normal distribution ;5" L
the forthcoming decades. Recent work indicates GSL will rise up to 120 cm by 2100 relative (Figure 4). This implies that DSL may be o0 i e
to 2000 (Kopp et al. 2014). However, at each stage of making sea-level projections there are skewed along the West Coastlines of USA, 90 ?mRFF::(f_{QOQ P t:>20RFF:88&5_1.200 R —
assumptions that will alter the uncertainty of the final result. These include drift corrections, South America and Africa). - | |
. . o . . igure 4: p-values of DSL MEM calculated by normality test for
spatial patterns of land-ice/water mass loss and glacial isostatic adjustment (GIA). Here we 5. GIA and ice-sheets RCP 4.5 and RCP 8.5 at 2090. Area within black contour: null-

hypothesis is rejected at 95% confidence limit (p = 0.05).

assess the cumulative effect of uncertainty in the resulting RSL projections to 2100. , ,
Differences between GIA models (Figure 5a,d) «
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2. Method of RSL projection Ty = " results in projected RSL change by 2100 -
We consider three scenarios, RCP 4.5, RCP 8.5 (Moss et al. 2010) § 1 o196 % itsftd o o § differing by less than 2 cm for the bulk of the 2
and an upper limit based on Jevrejeva et al. 2014. We aggregate R o o g lobal h h 70 d +60 o0 Z
spatial projections of individual sea-level components, which are N / /ii /A g global oceans, t ough up to - cmand + " '
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By combining realisations from the individual components, we o — —— . . . = :
derive a total uncertainty that varies in space (0, ¢) and time (t), & zz and Antarctic coastlines (Flgure 59) o
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where SAT is the impact of self-attraction of the ocean upon itself ; 33 B and. one that is unlform (Flgure 5€,f), medlan _383§ ! | ‘ | ‘ : z: §’
due to the long term alteration of ocean density changes, STRis 3201 prOJected RSL change in 2100 could differ by _GOQ_ETEE‘E?"’M&‘_ ‘_h)G - _‘ Pﬁ{)‘ |
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’ ’ ’ Fi 5: Spatial patt f RSL due to GIA (left), G land
is the Antarctic ice sheet, LAN is Land-water storage and GIA Figure 1: (a-c) GSL projections, GSL components at 2090 (box- the Southern Ocean, though the bulk of the (E;Ee) arI?da Alitzer]ctiecnz:i;ht) i :heee?cs Gl,i ;O)dege;g |agE5G
(aforenjentlonef:l). The funct.lon F(Q, 0) refer; to the. unique whisker) and fraction of variance of |nd.|V|dgaI compogents (DS.L global oceans differ by +5 cm (Figure 6d_f). (VM2) (Peltier. 2004) and ICE6G_C (VM5a) (Peltier et al. 2015)
normalised spatial pattern (fingerprint) associated with the ocean and GIA not global). (d-f) Total RSL projections at 50" percentile S i £ | i v aff whilst Greenland and Antarctic ice sheets show normalised. realistic
response to the mass redistribution of the given component. relative to 1986-2005 average at 2090. (g-i) 90% range (5t"- patial pattern or mass l0ss wi strong yd ect (modern) and uniform patterns of mass loss (Bamber & Ri\;a
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Steric and DSL projections are multl—moglel ensemble means (MEM) from CI\/\IP$ (Taylor gt al. L7 S osrores i Figure 6 (left): Difference between RSL projections at 2090 using
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are less than 0.5 cm (1850-2100) though the ensemble ranges up to 4 cm. For DSL (Figure * g B s Summary
3), differences in MEM (linear-quadratic) are up to £0.4 cm. Individual models vary by 10’s cm e - — | | |
o . . . b o ey o B, B Drift corrections are important for ensemble members of STR and
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