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2. Experimental Setup
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► ►

▪ To test the ideas outlined in (1), we 
perform a muon tomography using 
nuclear emulsion films.

▪ The goal is a 3D image of the base 
of the glacier.

▪ The Muon flux aŌer crossing the 
glacier and rock over Ɵme (~100 
days) can be measured with angu-
lar resoluƟon up to ~10 mrad.

▪ The absorpƟon rate of cosmic-ray 
muons can be used to reconstruct 
the base of the glacier 

▪ The tracks are tranformed into di-
recƟonal intensiƟes for inversion.

▪ For more methodological details, 
please refer to contribuƟons by 
Nishiyama et al. (2016) and Lech-
mann et al. (2016).  

▲ Fig. 3: Top: Profile through the Eiger glacier demonstrating the principle 
of the experiment. Bottom: Schmeatic illustration of the data accquisition. 
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4. Conclusions and Outlook
▪ The result`s resolution depends on the bedrock density distribution. To avoid errors, lab data uncertainties 

should be < 1%.

▪ To adress this, a 3D model is required for calculate density lengths with adequately low uncertaintis.

▪ Data from the prototype experiment is currently analised, first results expected for end of 2016.

▲ Fig. 2: Map outlining the targe-
ted glacier on the western flank of 
the Eiger (Basemap: Topographic 
map of Switzerland 25% transpa-
rent on Hillshade on DEM with 
2m resolution, © Federal Office of 
Topography, swisstopo, 2015).

◄ Fig. 1: Aerial picture of the 
Eiger galcier (highlited) among 
the Eiger and  Moench peaks.

1. Overview and MoƟvaƟon 
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The Eiger glacier, on the western flank of the Eiger (Bern, Central 
Swiss Alps) at 3700 m a.s.l., stretches over 2.6 km to the current 
elevaƟon at 2300 m a.s.l. A concave cirque is bordered by >40° 
steep flanks. The middle reach hosts a bedrock ridge where glacier 
diffluence occurs. The lower region of the glacier is characterized 
by several transverse crevasses. A basal Ɵll and lateral margins 
border the ice flow along the lowermost reach. 

While subglacial erosion in the cirque has probably been accom-
plished by plucking and abrasion, sub glacial melt water might have 
sculpted bedrock  farther downslope where the ice flow is constrai-
ned by bedrock. Overdeepening of some tens of meters is expec-
ted in the upper reach of the glacier, which is quite common in 
cirques (Cook & SwiŌ, 2012). 

   E is the Energy, ρ the density and L the length of and l 
the coordinate along the parƟcle path. The a term is 
energy loss due to ionisaƟon, while b is for Brems-
strahlung, nuclear interacƟons and e− e+ pair produc-
Ɵon (Lesparre et al., 2010). 

▪ The main energy loss (expressed by a and b) is due to 
the bulk density of the material, with an addiƟonal 
minor dependance on the average ͦZ/Aͧ raƟo 
(Lesparre et al., 2010). This has to be accounted for in  
every locaƟon (K.A. Olive et al., 2015). 

▪ Therefore a state of the art 3D geological model of the 
mountain is required to account for spaƟal density- 
and composiƟon-variaƟons.

▪ An accurate «best guess» model will be used for 
further analyzing glacial erosion processes.

3. Geological modelling in 3D
Why?
▪ Muon intesity is a funcƟon of energy, therefore energy 

loss by crossing maƩer is given by:
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How?
▪ Geol. unit surfaces and faults built from maps, profiles and own field data is used.

▪ Conversion of the surface model to a solid mesh without gaps. 

▪ AƩribuƟng density (detemined by He Pycnometry and Suspension method) and minerological and chemical 
data (from XRD-, XRF-analysis and Raman spectroscopy) 

▪ Result: 3D rasterized grid that will be used for the inversion of the muon data. 

▲ Fig. 4: 3D Visualization of the simplified geological map for the study area 
(Basemap: DEM with 2m resolution, © Federal Office of Topography, swisstopo, 
2015)

, where (ͪopacityͫ[gcm-2]),

▲ Fig. 5: Proposed workflow for the desired model with necessary input with stan-
dard software illustrated by an example from Zehner et al. (2016), modified.


