Ь	
UNIVERSITÄT	
BERN	

Variability of mesospheric water vapor above Bern in relation to the 27-day solar rotation cycle

Martin Lainer, Klemens Hocke and Niklaus Kämpfer Institute of Applied Physics University of Bern

EGU General Assembly, 19. April 2016, Vienna, Austria

Motivation

- Sun rotation triggers Lyman-α (121.56 nm) oscillations with a mean synodical period of 27.28 days
- Linking mechanisms (e.g. photolysis) between variability of mesospheric water and solar radiation are of interest
- Signatures of 27-day solar variability were found in tropical middle atmospheric OH, H₂O (Shapiro et al., 2012, ACP) and zonally averaged CO (Ruzmaikin et al., 2014, ASR)
- Extra-tropical investigations including observations of middle atmospheric water vapor found less attention, motivating our study

Mid-latitudes: 27-day solar variability Effects on mesospheric water?

MIAWARA: <u>Mi</u>ddle <u>A</u>tmospheric <u>Wa</u>ter Vapor <u>Ra</u>diometer

es between changing Atmo

Located near Bern, Switzerland (46.88°N / 7.46°E)

NIVERSITÄT

Operational since 2002

Operating during day and night at all weather conditions except precipitation (rain, snow)

Measures the pressure broadened rotational transition line of H₂O at 22.235 GHz

Vertical H₂O profile retrieval by the Optimal Estimation Method (OEM)

MIAWARA H₂O time series & solar Lyman-α composite

UNIVERSITÄT BERN

- > MIAWARA H₂O time series (April 2007 until March 2015) between 50 and 80 km
- Composite Lyman-α time series from LISIRD (LASP Interactive Solar Irradiance Data Center)

27-day relative wave amplitudes

UNIVERSITÄT BERN

- Non-recursive FIR band-pass filter with Hamming window
- > Central frequency $f_p = 1/27$ d; Cut-off frequency $f_c = f_p \pm 0.1 * f_p$
- > Oscillations higher or shorter than f_c are suppressed
- > Filter runs forward and backward along the data time series (zero phase lag)

Mean H₂O amplitude spectra (Bern)

> Derived from band-pass filtering at frequencies between 1/10 d and 1/50 d

Differences presumable due to horizontal inhomogeneity (limb vs. line of sight observation)

NH 27-day wave amplitude distribution at an altitude of 70 km

Weak Lyman- α variability

Aura MLS H₂O 27-day wave amplitude on 0.04hPa between 2007-04-01 and 2011-03-31

Strong Lyman-α variability

UNIVERSITÄT Rern

Aura MLS H₂O 27-day wave amplitude on 0.04hPa between 2011-04-01 and 2015-03-31

> Higher H₂O wave amplitudes during period of strong Lyman-α oscillations

Mean zonal mean H₂O amplitude spectra

Aura MLS (v4.2) measurements within the latitude belt 44°-50°N are processed

Enhanced amplitudes in the 27-day and 13.5-day period band in time period B (in comparison to period A)

Time lagged cross-correlation between 1 and 0.01 hPa

Pressure [hPa] -0.2 solution -0.3 O 3 -0.4 Jan13 -20 -10 10 20 30 Jan12 Jan14 Jan15 -30 0 Time lag [days] Time

Negative cross-correlations up to -0.3 (upper mesosphere) Confidence ≥ 99 % (filled contours) Phase lag: 6-10 days Solar forcing leads the H₂O response

UNIVERSITÄT

Cross-Wavelet Transform (XWT)

MIAWARA H₂O time series averaged between 64 and 80 km

Jan14

Jan13

Time

Significant (two sigma level) high common wavelet power in the 27-day band when Lyman-α oscillations intensify

UNIVERSITÄT

RERN

Variable phase relationship

Jan12

1/8 1/16

Jan15

Solar superstorm 2012

Cross-correlation between MIAWARA H₂O and solar Lyman-α

UNIVERSITÄT BERN

Time series of Lyman- α and MIAWARA H₂O (deseasonalized, averaged between 64 and 80 km

Anti-correlation

Time lagged cross-correlation between Lyman- α and MIAWARA H₂O for pressure levels between 1 and 0.01 hPa

Confidence \geq 95 % (filled contours)

Cross-correlation

Lainer et al. (2016)

Conclusions

- b UNIVERSITÄT BERN
- Enhanced H₂O wave activity above 0.1hPa in the 27-day band is present during the more active time of solar cycle 24 (period B from 2011-04-01 to 2015-03-31), not only locally for Bern but also at other places in the 44°-50°N latitude belt
- Cross-correlation coef. of about -0.3 between solar Lyman-α and MIAWARA H₂O (phase lag of 6 to 10 days)
- Cross-Wavelet analysis: Significant (two sigma level) high common wavelet power in the 27-day band with variable phase lock behavior
- The competition between advective transport and photo-dissociation loss of mesospheric H₂O may explain the sometimes variable phase relationship between mesospheric H₂O and solar Lyman-α oscillations

Solar variability on the 27-day periodicity scale causes observable photochemical and dynamical processes in the mid-latitude mesosphere

The End

D UNIVERSITÄT BERN

Variability of mesospheric water vapor above Bern in relation to the 27-day solar rotation cycle

Martin Lainer^{a,*}, Klemens Hocke^{a,b}, Niklaus Kämpfer^{a,b}

^a Institute of Applied Physics, University of Bern, Bern, Switzerland
^b Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland

Acknowledgements

Swiss National Science Foundation Data access via LISIRD NASA for EOS Aura MLS data MeteoSwiss in the frame of GAW A. Grinsted (wavelet software)

The End

UNIVERSITÄT BERN

Martin Lainer^{a,*}, Klemens Hocke^{a,b}, Niklaus Kämpfer^{a,b}

^a Institute of Applied Physics, University of Bern, Bern, Switzerland ^b Oeschger Center for Climate Change Research, University of Bern, Bern, Switzerland

Thank you for your attention!

