

Comparison of VLBI TRF solutions based on Kalman filtering and recent ITRS realizations

Benedikt Soja^{1*}, T. Nilsson¹, S. Glaser², K. Balidakis², M. Karbon¹, R. Heinkelmann¹, R. Gross³, H. Schuh^{1,2}

*bsoja@gfz-potsdam.de

¹GFZ German Research Centre for Geosciences, Potsdam, Germany

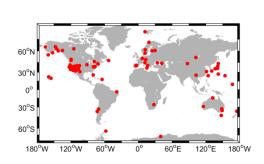
²Technische Universität Berlin, Berlin, Germany

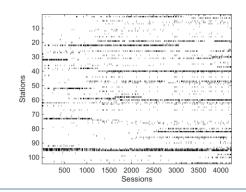
³Jet Propulsion Laboratory, California Institute of Technology,

Pasadena, United States of America

Kalman filter for TRF determination

- Time series representation → capture short-term variations
- Short-term stability by restrictive stochastic model
- Predictions by extrapolating the functional model
- TRF easy to update & real-time capable
- Kalman filter software for multi-technique TRFs (KALREF) developed at NASA JPL
 - Wu et al. (JGR, 2015)
 - JTRF2014
- Software at GFZ: VLBI only focus on different modeling approaches
 - Soja et al. (JoG, submitted)





Input VLBI data

- 4239 IVS VLBI sessions between 1980 and 2013
 - 4 or more telescopes participating
 - Spanning a polyhedron with a volume of more than 10^{15} m^3
- 104 stations out of 143 stations considered
 - Regular observations over more than 1 year
- Session-wise station coordinates XYZ
 - NNT+NNR w.r.t. ITRF2008 for all stations with ITRF2008 coordinates.

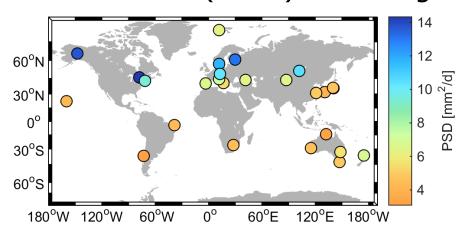
Kalman filter setup

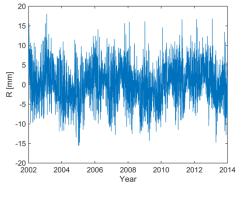
- Kalman filter & smoother
- States updated for every VLBI session (usually every 1-4 d)
- Breaks in position and/or velocity
 - Earthquakes, equipment changes
- Output:
 - Filtered and smoothed XYZ time series
 - Average values: XYZ at reference epoch, velocities, annual signals
- Datum by 12 parameter transformation (scale not changed)
 - Average coordinates & velocities w.r.t. ITRF2008 for selected datum stations

$$\tilde{x}_k = F_k x_{k-1}$$

$$\tilde{P}_k = F_k P_{k-1} F_k^T + Q_k$$

$$F_k = \begin{bmatrix} 1 & dt & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2\cos\left(2\pi\frac{dt}{T}\right) & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$



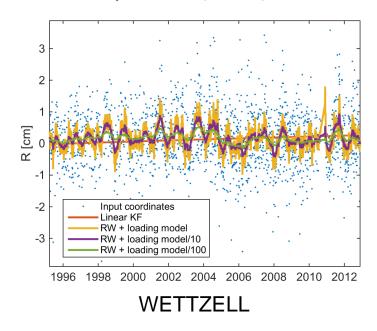


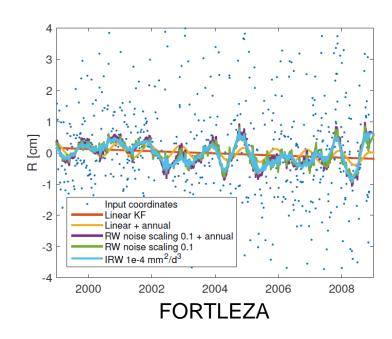
Process noise of station coordinates

- Assumption: irregular station coordinate variations due to unmodeled NTAL, NTOL & CWSL displacements
- Time series of NTAL, NTOL & CWSL
 - Downloaded from massloading.net (Petrov, 2015), resolution 6 h
 - Sum of displacements calculated; trend & annual signal removed

 Assuming random walk (RW) processes → computation of power spectral densities (PSDs) of driving white noise

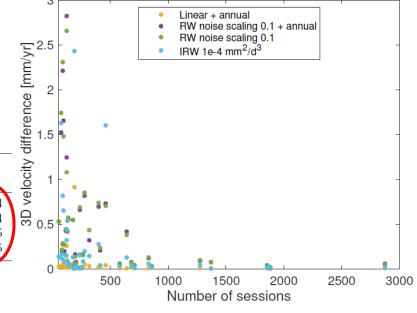
ALGOPARK





Station coordinate time series

- Solutions with different functional and stochastic models
 - Linear, linear+annual, RW, RW+annual, integrated RW
- RW solutions: applying noise model from loading displacements
 - Scaled by factor 1, 1/10, 1/100



Velocity comparison of TRF solutions

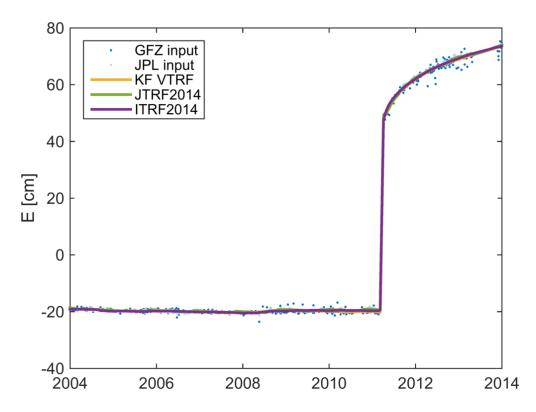
- RMS values of the velocity differences of Kalman filter TRF solutions w.r.t. the linear Kalman filter TRF solution
- 74 stations
 - with observation history > 3 years
 - without breaks
- 22 stations
 - out of the 74 stations
 - participated in more than 200 sessions

RMS [mm/yr]	74 stations				22 stations (> 200 obs.)			
	R	\mathbf{E}	N	3D	R	\mathbf{E}	N	3D
Linear + annual	1.65	0.64	0.52	1.85	0.03	0.01	0.01	0.04
RW noise scaling $0.1 + annual$	3.52	0.88	2.61	4.47		0.12	0.09	0.34
RW noise scaling 0.1	1.26	0.56	1.48	2.02	0.31	0.13	0.10	0.3!
IRW $10^{-4} \text{ mm}^2/\text{day}^3$	1.26	0.39	0.61	1.45	0.28	0.09	0.19	0.3!

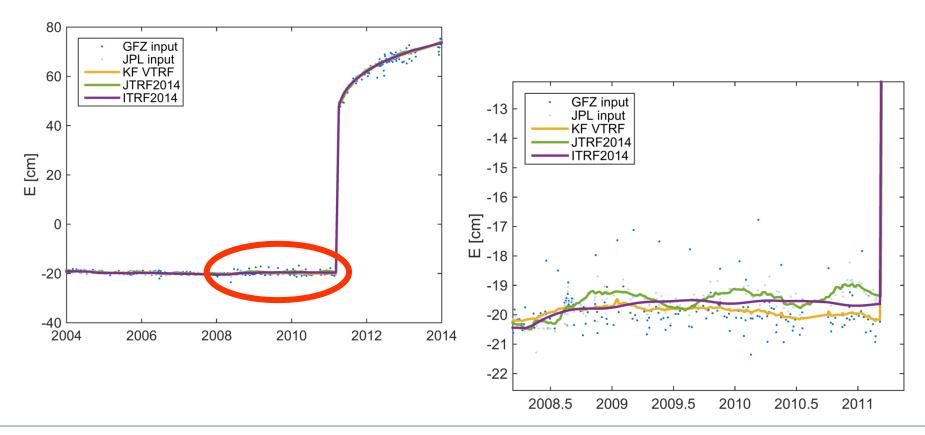
0.3 mm/yr effect

ITRF2014 & JTRF2014

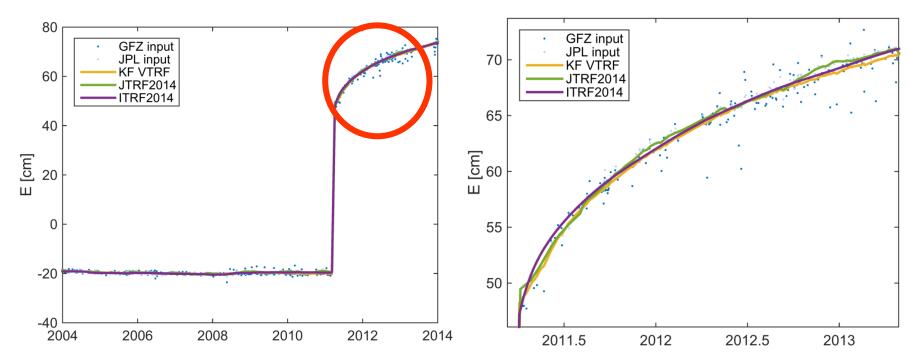
- Based on GNSS, VLBI, SLR & DORIS SINEX files
- Combination at the parameter level
 - VLBI normal equations inverted before combination
- Datum: SLR origin, ITRF2008 orientation, VLBI+SLR scale
- ITRF2014: least squares estimation
 - Linear + post-seismic + annual + semi-annual
- JTRF2014: Kalman filter & smoother
 - Linear + annual + semi-annual
 - Process noise for non-linear & non-harmonic signals
 - Weekly time steps



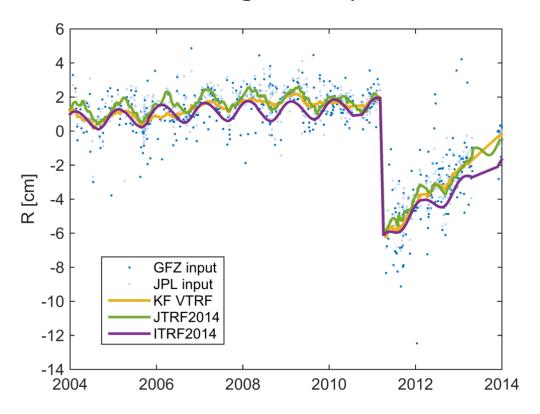
TSUKUB32: east component



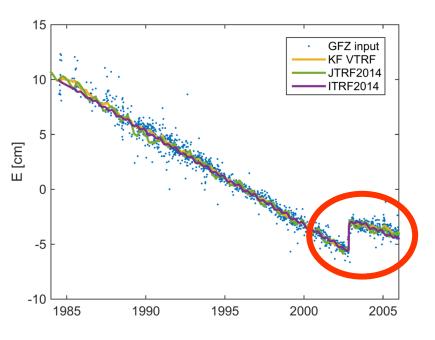
TSUKUB32: east component – before Tōhoku earthquake

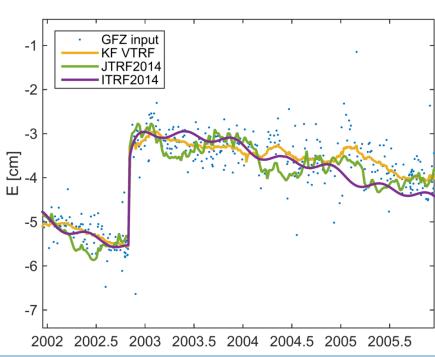


TSUKUB32: east component – after Tōhoku earthquake



TSUKUB32: height component





GILCREEK: east component

Recapitulation

- Kalman filtering successfully used to create VLBI TRFs
 - Time series representation recovery of non-linear signals
- Stochastic model station-dependent and time-variable
 - Noise from unmodeled elastic displacements
- Effect on velocities when using process noise: > 0.3 mm/yr
- Comparison to ITRF2014 and JTRF2014
 - Promising agreement of post-seismic signals
 - Differences in seasonal signals
 - Investigations to be extended... (e.g., including DTRF2014)

References

- Altamimi et al., 2011: ITRF2008: an improved solution of the international terrestrial reference frame. J Geod. 85(8), 457-473. doi:10.1007/s00190-011-0444-4
- Petrov, 2015: The International Mass Loading Service. IAG Symposia, doi: 10.1007/1345_2015_218
- Soja et al., 2016: Determination of a Terrestrial Reference Frame via Kalman Filtering of Very Long Baseline Interferometry Data. Journal of Geodesy, submitted.
- Wu et al., 2015: KALREF—A Kalman filter and time series approach to the International Terrestrial Reference Frame realization. J. Geophys. Res. Solid Earth, 120, 3775–3802. doi:10.1002/2014JB011622.

Thanks for your attention!

bsoja@gfz-potsdam.de

Acknowledgements

VLBI data: IVS TRF data: IGN & JPL

Loading data: IMLS

Project funding: FWF (VLBI-ART – P 24187-N21)

