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(@ Motivation

® Many people and pollutant sources in urban areas, hence pollutant
dispersion important

® Rotach et al. (2004) propose idea to further improve their dispersion model
® Goal of this work is to implement and evaluate that idea:

Hypothesis

Including transport in street canyons improves model performance.

2 Existing model

21 | ® Rotach et al. (1996)
| wind ® well mixed Lagrangian stochastic dispersion
IS / ML ® Fokker-Planck and Langevin equation
T ® 3-dimensional, but horizontally homogeneous
‘ ® convective, neutral and stable conditions
® mean wind always in x-direction
[ ks [T ® Rotach (2001)
) — X o ® roughness sublayer (RS) turbulence parameterization
di| [{UCL W using local u,
i ® Jses kernel method to calculate tracer
Model domain, coordinate system with concentration after point release
zero plane displacement d, building
height H and width W ® Lower boundary at zero plane displacement d

(3@ Model evaluation method

® Model output compared to field measurements of the Basel UrBan
Boundary Layer Experiment (BUBBLE)

® SFg tracer release and sampling along arcs in stationary conditions

® Relative Difference (RD), Normalized Mean Square Error (NMSE),
Fractional Bias (FB), CORRelation coefficient (CORR) and Factor of Two

(F2) to compare measured and simulated concentrations
® Blocked moment bootstrap of difference to evaluate significance

@ Old lower boundary conditions

Reflection

® classical approach

® particle immediately reflected

® vertical and horizontal velocity perturbation have
their sign inverted

Conceptual sketch of a particle

trajectory reflected at the zero ® upper bou ndary condition analog
plane displacement.

Residence time

® introduced in Rotach et al. (2004)
® 33% chance of trapping, 67% reflection

T ® particle does not move during trapping
e ® stays trapped for 7 = %—H, where uy is mean
H

As above, but particle may stay rooftop wind Ve|ocity

“trapped” for a while.
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(®) New lower boundary condition

6 Sensitivity studies

® details in Stockl (2015)

Assumptions
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Simplified diagram of a corkscrew vortex in a o
street canyon

Wind velocity decomposition

Top down view on an oblique canyon and the
rooftop velocity decomposition

Drift calculation
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As above, now the drift along the canyon is split
into x and y-coordinates

® similar to residence time approach, but particles move while trapped

® movement depends on wind speed and street canyon direction

skimming flow regime (H/W = 1)
endless street canyons without intersections
corkscrew vortex forms if oblique incidence

angle (> 30°) of wind on canyon and
rooftop wind speed Uy > 1.5 m s !

canyon direction chosen from discrete,
empirical distribution

50% chance of hitting canyon (geometry of
Basel)

66% chance to penetrate shear layer at roof
top level

Decompose mean rooftop velocity into
along canyon and cross canyon component:

U, = pyUpy COS
U:; = pcUH SIN

If vortex forms: T = %—H else 7 = 27". The

factor p, = 0.8 is estimated from
literature by averaging empirical wind speed
profiles. p. = 0.4 is the average factor of
circumferential velocity estimated from
literature.

Randomly circulate multiple times with 66 %
chance to escape by multiplying 7. Then
use residence time 7 and along canyon wind
speed to calculate particle movement

Au, = u,r
Ax = Au,coso
Ay = Au,sin
This displacement is added to each trapped

particle for each time step it stays trapped
in the canyon.

® Canyon direction

® tested fully parallel, fully perpendicular and empirical distribution

® perpendicular significantly better for model performance than others
® Wind speed parameters p, and p.

® tested full physically reasonable range

© 01 <p,<14and0.1 <p:<0.9
® best run with p, = 0.1, p. = 0.9 (minimal movement, fastest ejection)

@ Results

Statistics overview, gray background is the base run, green background means significantly better (95 %),
magenta background significantly worse than base run; bold values are the best in each column; top half uses
standard zero plane displacement d, lower half uses larger d derived from long term measurements

Experiment RD FB NMSE CORR F2
residence time 1.47 -0.12 2.24 0.53 0.30
drift 1.66 -0.22 2.34 0.53 0.30
reflection 1.40 -0.06 2.24 0.53 0.29
residence time, d..,, 1.17 0.13 2.22 0.57 0.34
drift, d,., 1.19 0.13 2.22 0.57 0.34
reflection, d,, 1.07 0.24 2.43 0.57 0.35
000d | 0 ;;;denlce' e ' ® With old zero plane displacement d-
‘Z 1+ drift /,g’ = consistent with the results of the sensitivity
B O reflection % " studies: faster release better
% 100 - o 0 & - ® Not surprising: model generally overpredicts
E g;m’ﬂ concentration (for BUBBLE) and trapping
5 L of particles increases that
§ 0y ® B @ = ® d,.,, changes behavior: now underpredicts,
% 1 / - making bias of reflection worse.
e 1 ® Need other field studies and further studies
1 10 100 1000

of into effect of d (also roughness length
and RS height, not shown)

concentration observed (ng m_2)

Concentration comparison: simulated by

model and observed during BUBBLE.

Summary

® New method to include street canyon effect in a Lagrangian particle
dispersion model with zero plane displacement

® Decomposes roof top velocity, calculates mean in-canyon velocity and
transports particles that pierce the lower model boundary

® Only valid in skimming flow regime
® Results inconclusive, further testing with other data sets needed

® Effect of zero plane displacement d larger than effect of boundary condition

Conclusion

Transport in street canyons worse or inconclusive, depending on value of zero
plane displacement, further studies needed.
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