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Introduction
•Dynamic changes in ocean-terminating glaciers account for ∼ 50 % mass

loss of the Greenland ice sheet.
•The related calving process occurs when stresses at the calving front

exceed the fracture toughness of ice.
•This process is still not well understood and poorly represented in current

generation ice-sheet models.
•Sensitivity analysis on idealized glacier→ influence of water depth, slope

of the calving front and basal sliding on ice failure → calving.

Study region

View of Eqip Sermia from the East side

•Eqip Sermia, West Greenland
•Recent retreat of the terminus
•Different geometries induce diffe-

rent stress and flow regimes:
– Northern part: 200m grounded

front inclined 45◦

– Southern part: 50m vertical
cliff
close to floatation

Calving front of Eqip Sermia on 30th June
2014

Data & methods
Data:
• Idealized geometry: 2000m x 200m block
•Real geometries and velocities:

– Terrestrial radar interferometer (TRI) → surface topography and
velocity

– Operation IceBridge radar profile (Gogineni, 2012) + Bathymetry
measurements (Rignot et al., 2015) → bed topograpy

Model
• 2-dimensional flow model, solving full Stokes flow equations, using Glen’s

flow law, implemented in the libMesh finite element library (Kirk et al.,
2006)
•Basal sliding: ub = Cτb

• Ice failure using the Hayhurst criterion (Hayhurst, 1972):
χ(σ) = ασ1 + βσe + (1− α− β)Iσ

Combining the maximum principal stress σ1, the von Mises yield criterion
σe and the first invariant of the cauchy stress tensor Iσ and where α and β

give the relative importance of the invariants and fulfill:
0 ≤ α, β, (1− α− β) ≤ 1

Stress and velocity sensitivity analysis
Water depth Fixed conditions: No basal sliding, 90◦ calving front slope
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Calving front slope Fixed conditions: No basal sliding, water depth = 0m
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Basal sliding Fixed conditions: 90◦ calving front slope, water depth = 100m
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Real geometry of Eqip Sermia
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Conclusions
•This stress analysis improves our understanding of how and where the

ice is susceptible to failure and crevasse formation:
– Water depth and calving front slope significantly influence the stress

and flow regimes
– Increasing basal sliding leads to higher stresses at the surface ups-

tream of the calving front
•Extrusion flow is observed by TRI measurements and repoduced by the

flow model.
•Modelled velocities are smaller than observed by TRI, sliding needs to be

included.
•Modelled ice failure (χ(σ) > 0) patterns correspond to observed crevasse

formation location.
• In further work, we aim to use this information as a constraint to inves-

tigate the short-term and long-term processes related to outlet glacier
calving.
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