
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Automatic Event Bulletin Built by Waveform Cross Correlation  

using the Global Grid of Master Events with Adjustable Templates 

 Ivan Kitov, Dmitry Bobrov, and Mikhail Rozhkov 

International Data Centre, CTBTO 

Abstract. We built an automatic seismic event bulletin 
for the whole globe using waveform cross correlation at 
array stations of the International Monitoring System 
(IMS). To detect signals and associate them into robust 
event hypotheses in an automatic pipeline we created a 
global grid (GG) of master events with a diversity of 
waveform templates. For the Comprehensive Nuclear-
Test-Ban Treaty (CTBT), the GG provides an almost 
uniform distribution of monitoring capabilities and 
adjustable templates. For seismic areas, we select high 
quality signals at IMS stations from earthquakes. For 
test sites, signals from UNEs are best templates. Global 
detection and association with cross correlation 

technique for research and monitoring purposes 
demands templates from master events outside the 
regions of natural seismicity and test sites. We populate 
aseismic areas with masters having synthetic templates 
calculated for predefined sets of IMS array stations. We 
applied various technologies to synthesize most 
representative signals for cross correlation and tested 
them using the Reviewed Event Bulletin (REB) issued 
by the International Data Centre (IDC). At first, we 
tested these global sets of master events and synthetic 
templates using IMS seismic data for February 13, 
2013 and demonstrated excellent detection and location 
capability. Then, using the REB and cross correlation 

bulletins (XSELs) experienced analysts from the IDC 
compared the relative performance of various templates 
and built reliable sets of events and detections for 
machine learning. In this study, we carefully compile 
global training sets for machine learning in order to 
establish statistical decision lines between reliable and 
unreliable event hypotheses, then apply classification 
procedures to the intermediate automatic cross 
correlation bulletin based on the GG, and compile the 
final XSEL, which is more accurate and has lower 
detection threshold than the REB. 
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Conclusion. This work extends the research we presented at the 

Science and Technology 2015 conference regarding the 

construction of Global Grid of master events for seismic 

monitoring with waveform cross correlation.  

 Using the catalogue of seismic events (REB) created by the 

IDC, we have done some preliminary estimates of the portion of 

valid events obtained by waveform cross correlation. Machine 

learning was a natural choice for selection of valid events from 

the extremely large amount of data. As in other areas, we 

doubled the number of events in the REB, with all new events 

matching the IDC event definition criteria. 

 We have created a prototype of cross-correlation-based 

Global Grid monitoring system, which has been tested at the 

IDC during the past years and for this study was populated with 

one synthetic template obtained by the PCA (Principal 

Component Analysis) of real waveforms from a hundred of 

underground nuclear tests distributed over the world. One 

template waveform was replicated over all stations and  

individual channels. Time delays between individual channels 

of an array were calculated for master event-station theoretical 

slownesses. 

 To use machine learning at the global level it is necessary to 

create a training dataset populated with valid events created by 

waveform cross correlation as well as false events created by 

the same method. Here we use the REB to build a cross 

correlation event list and process only data at relevant stations. 

To reduced calculations, we have processed only time intervals 

around known REB events. Two days, February 13 and 14, were 

processed continuously and a large number of false events 

together with associated detections were build.  

 Overall, we have demonstrated a significant increase in the 

number of detected arrivals when cross correlation is used. The 

obtained events and arrivals were used for training of various 

classification algorithms applied in the framework of 

continuous processing with cross correlation. 

 The Global CC Grid technique gives an opportunity for 

complete implementation of CC-based global detection and 

location. The specific features of the P-waves from underground 

nuclear tests used in this study can reduce the global detection 

threshold of seismic monitoring under the CTBT by 0.4 to 0.5 

units of magnitude. This corresponds to the reduction in the test 

yield by a factor of 2 to 3 for any location and depth of burial. 

Considering the history of seismic monitoring of UNEs this is a 

crucial improvement which can be also enhanced by a more 

effective use of IMS array stations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Real seismograms with varying 

distance, depth, and UNE source functions 

which were used in PCA. 

 An underground nuclear test can be 

conducted in any place on the planet, not 

only in seismic regions. Figure 1 presents a 

map of events from the Reviewed Event 

Bulletin (REB) as found by the International 

Data Centre (IDC) in 2013. Figure 2 shows 

the Seismic Network of the International 

Monitoring System (IMS) and relative 

positions of selected historical underground 

nuclear tests. The difference between 

geographical distribution of earthquakes and  

explosions is striking.  

 The technique of waveform cross 

correlation (matched filter) is naturally based 

on high-quality waveform templates from a 

representative set of master events. In 

seismic areas, one can use waveform 

templates from natural events. Similarly, one 

can use signals from underground nuclear 

tests where available. And for the rest of the 

world we need the best possible templates 

for the purpose of seismic monitoring. Here 

we present and test the performance of the 

uniformly distributed Global Grid (GG) of 

master events designed for the best 

performance of waveform cross correlation. 

 The events in the REB with detections 

found by cross correlation at two and more 

IMS arrays are then used to build training 

sets for machine learning. The events built 

by cross correlation and not found in the 

REB are also used for training as noise. 

 Figure 3 presents the global coverage by 

master events. A small segment of the GG is 

shown in Figure 4. Each node contains a 

master event with templates at IMS array 

stations. Since the IMS network is sparse, the 

number of stations associated with a given 

master may vary from 3 to 10. The quality, 

sensitivity, and resolution of an array depend 

on many factors; its aperture and number of 

sensors are likely among the most important.  

 Considering the design and historical 

performance of the primary IMS arrays we 

have to distribute them over three quality 

groups. For a given master, we use arrays 

from Group 2 and 3 only when no array from 

Group 1 is available. The largest number of 

IMS stations associated with a master is 10. 

The smallest number is 3 as dictated by the 

strict IDC requirement for a valid REB 

event. There are some areas where 3 primary 

arrays are not available. Currently, we are 

extending the set of stations to use templates 

from 3-C stations to build master events for 

nodes in the not covered areas. 

 Each node or master event is responsible 

for a circular footprint of ~125 km in radius. 

The distance between nodes is approximately 

140 km. Therefore, the GG covers the whole 

earth without any blind areas. It is important 

that the zones of responsibility of 

neighboring nodes intersect. Figure 5 

presents the detailed design of the nodes. For 

all (~23,500) nodes, cross correlation with 

templates at each associated station is 

calculated.  
 

Figure 2. A map of IMS seismic network with historical UNEs. Blue circles – primary arrays, blue triangles – 

primary 3-C stations. Yellow circles – auxiliary arrays, yellow triangles – auxiliary 3-C stations. Red starts – 

underground nuclear explosions. Only primary arrays are used for cross correlation. 

Figure 4. Sample segment of the Global Grid. 

• Spacing between grid points (masters) ~140 km. 

• P-wave templates from three to ten IMS primary arrays per master 

• Distance for P (Pn)-phase from 6 to 96 degrees 

• At least three IMS stations to create an REB event 

Feasible templates:  

- Real waveforms from events near the GG nodes,  

- Grand masters – best events replicated over larger sets of GG nodes 

- Synthetic waveforms - any source function, mechanism, depth, location, etc.  

Figure 9. Finding the 2013 DPRK with the Global Grid. The number 

of stations associated with the event hypotheses obtained in local 

association process. Only the hypotheses with 3 and more associated 

stations are shown. The best hypothesis has 9 associated stations and 

is the closest to the test position estimated from satellite data. All 

detections at the involved array stations are found using the first PCA 

component shown un Figure 7.  

Figure 8. For a set of master events around the DPRK-2013, 

sample distributions of cross correlation coefficient between 

master templates and real waveforms from the 2013 DPRK for 

array stations AKASG and WRA. Almost all masters have 

detections at AKASG and WRA. These detections and 

detections at other 8 IMS stations are used to build event 

hypotheses. 

Figure 1. Map of REB events found during 2013. Red circles – events found by cross correlation (i.e. two 

or more REB phases are within 4 s). White circles – not found events –most included 3-C stations not 

considered for waveform cross correlation at this stage. 

Figure 3. Global Grid for Cross Correlation. There are ~23,500 nodes 

in the GG. Each node represent a master event with 3 to 10 waveform 

templates at primary IMS array stations. 

 

SEISMIC MONITORING: EXPLOSIONS CAN BE CONDUCTED ANYWHERE  

GLOBAL CROSS CORRELATION GRID: DESIGN 

Figure 5. Local Association and Conflict Resolution  

1. Five circles with ~25 km increment in radius.  

2. 91 nodes for origin time calculation (green points)  

3. All hypotheses at the outer circle (red points) are rejected 

since they have to be created by neighbouring masters.  

Global Grid design, 23,500 nodes  

 

Array stations arranged by quality: 

Group 1 = WRA, TORD, MKAR, ILAR, GERES, PDAR, CMAR, SONM, AKASG, BRTR, GEYT  

Group 2 = ASAR, ZALV, YKA, ARCES, TXAR, KSRS  

Group 3 = USRK, FINES, NVAR, NOA, MJAR 

 

GCCG quality criteria:  

XSEL event:     NSTAmin = 3; dTorigin = 6s;  AZGAPmax = 330º  

Detections:        SNRmin = 0.5;  SNR_CCmin = 2.5; |CCmin | = 0.2;  

Quality check:  FKSTATmin = 2.5; AZRESmax = 20.0º; SLORESmax = 2.0 s/º 

WAVEFORM TEMPLATES, CROSS CORRELATION, EVENT BUILDING  

MACHINE LEARNING FOR THE GCCG 

Figure 7. The PCA 1st component is used as a 

universal template for all stations and channels 

 Despite its original design aimed at seismic 

monitoring of nuclear tests, waveform templates 

for the GG can be selected from a broader set of 

signals depending on the nature of target 

seismic sources. Here, we follow the way 

known as a signal dimensionality reduction.  

 The dimensionality reduction allows 

finding a template best describing the set of 

records of nuclear explosions conducted in wide 

ranges of epicentral distance, rock types, yield, 

and depth of burial. Some examples of such 

waveforms are presented in Figure 6. These real 

seismograms have different sampling rate and 

were recorded by sensors with different 

responses. Therefore, they were all reduced to 

one sensor type and sampling rate.  

 Principal Component Analysis (PCA) 

performed with Singular Value Decomposition 

(SVD) is used as a tool to build templates. 

Figure 7 demonstrates the first principal 

component obtained by the PCA. This 

waveform was used to build synthetic templates 

for all channels and all arrays. The only 

difference between the templates was in the 

sampling rate which varies from 20 Hz to 80 Hz 

for IMS array stations. For a given array, time 

delays between channels were calculated from 

theoretical travel time curves according to 

master/station positions.  

 Relevant signals are detected by STA/LTA technique 

applied to the trace of cross correlation coefficient 

averaged over all channels without time shifts – for two 

events close in space cross correlation peaks 

simultaneously at all channels. All detected signals have 

to match a number of quality criteria as obtained by 

statistical and FK-analysis. For all detections, their 

arrival times are projected back to master events by 

theoretical travel times. 

 Using the full set of origin times for a given master, 

we build slave event hypotheses. In order to better 

predict the origin times, each node has five circles of 

hypothetical locations for the sought (slave) events 

where travel times to the stations relevant for the given 

master event are predicted (Figure 5); the spacing 

between circles is 25 km and the outer circle has radius 

of 125 km. Because the outer circle (red points) of a 

given master intersects with internal circles of the 

neighboring masters we reject all final event hypotheses 

built on this outer circle. Such hypotheses must belong 

to the neighboring events. Other conflicts between event 

hypotheses belonging to neighboring events are resolved 

by the number of stations and the standard deviation of 

origin times for arrivals on the associated stations.  
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USING THE REB FOR TESTING GG PROCEDURES  

Figure 10. Locations of 252 new 

qualified event hypotheses, which 

match the REB criteria.  

 

 In order to assess the portion of correct 

hypotheses which can be potentially built by the 

GG we have tested a smaller case of seismicity 

in North Atlantic region. Because of task 

dimension, machine learning was used with the 

MATLAB TreeBagger tool as the first choice. 

Following general procedure for this 

application, we have compiled a dataset 

containing two classes of arrivals as associated 

with valid and invalid (strictly according to the 

IDC definition) events. To populate the set of 

valid events and detections, we selected the 

event hypotheses obtained by the GG, which 

have close origin times to the events reported in 

the REB.  

 Overall, we selected 258 valid event 

hypotheses obtained by the GG prototype for 

the training set. The set of invalid events was 

created by a random choice of ~3% (1859) of 

the hypotheses far enough (600 s) from the REB 

events. In total, the class of valid events 

included 1031 arrivals at 7 IMS array stations 

and there were 5631 arrivals associated with the 

events not matching REB criteria.  

 After training, we classified 177,520 

arrivals in 48,443 hypotheses. Classification 

algorithm allowed to build 252 new valid events 

defined by three or more valid arrivals as 

required by the IDC event definition criteria. 

Figure 10 displays locations for these qualified 

events, which repeat the pattern of the Mid-

Atlantic Ridge seismicity.  

 To be included in the REB, all selected 

hypotheses have to be confirmed interactively. 

As in our previous studies, cross correlation 

approximately doubles the amount of REB 

events and reduces the detection threshold by 

0.4 magnitude units.  

 The current study includes three 

stages. At first, we conducted cross 

correlation of the templates based on 

the first PCA component in Figure 7 

with the waveforms likely containing 

signals from all seismic events 

included in the 2013 REB. The set of 

successful detections of the REB 

events (2 and more arrivals for one 

event) builds a part of training set. 

Secondly, we built complete cross 

correlation bulletins (XSELs) for 

February 13 and 14, 2013. Finally, we 

applied various machine learning 

methods to the training set containing 

valid detections (i.e. in the XSEL 

events matched in the REB) and false 

detections (i.e. those in the XSEL 

events not matched in the REB) and 

classified all events hypotheses in the 

XSELs for Feb. 13 and 14. The 

resulting XSEL is considered as a 

substitute to the REB. 

 From 33,710 REB events built in 

2013, we used 30,513, which have 2 

and more primary IMS arrays. Only 

master events within 1400 km from the  

REB events were used to populate the 

set of valid events. Time windows 

included the segment -5 min to +5 min 

from the expected arrival times on 

stations related to each master. The 

reduced set of masters (around 300 

instead of ~25,000 in the GG) and short 

time window allow fast calculation for 

one year.  

 All cross correlation detections for 

all masters were used to build event 

hypotheses and, after local association 

and conflict resolution, the best events 

are saved in an XSEL. At this stage, the 

principal goal is to find more arrivals at 

IMS array stations than listed in the 

REB for future use in machine 

learning. We define an REB arrival as 

found when there is a cross correlation 

detection within 4 s.  

 There are 16,318 REB events 

having 2 and more arrivals found by 

cross correlation. At the same time, we 

find many arrivals at other stations of 

the same master, which were not 

detected by standard procedures. 

Figure 11 shows the numbers of found 

REB detections and added detections 

for 22 stations.  

 For a synthetic template, 

theoretical time delays between 

channels and the absence of empirical 

SASCs may lead to poor azimuth and 

slowness estimates as obtained by the 

FK-analysis of cross correlation traces. 

Before building event hypotheses, we 

used the closest masters to detect 

signals near those existing or expected 

in the REB. The number of found and 

added arrivals has increased. Figure 12 

demonstrates that there are many more 

detections with slowness and azimuth 

residuals beyond the predefined limits. 

 The best stations like WRA have 

very low proportion of such detections 

as they provide reliable estimates of the 

studied parameters. However, judging 

by the distribution of CC and SNR_CC 

for these detections many of them are 

of relatively high quality and thus can 

be use in local association and then in . 

Figure 11. The number of found REB and added detections. 

Most effective stations (WRA,ASAR,MKAR …) have 

relatively low proportion of added events. Poor stations may 

add as many arrivals as found in the REB.  

Figure 12. The number of arrivals found by CC within the 

predefined Azres and Slowres limits and added detections out 

of these limits. Most effective stations WRA, ASAR, MKAR 

… have very low proportions of added arrivals.  

 To perform machine learning with valid and 

false detections we used scikit-learn (0.17.1, 

www.scikit-learn.org) - a set of python modules for 

machine learning and data mining. In order to 

optimize machine learning for monitoring purposes, 

we have tested various applications including: SVM 

with linear kernel, SVM with Radial Basis Function 

kernel, Decision Tree, Nearest Neighbors, Random 

Forest, AdaBoost, Naive Bayes, Linear 

Discriminant Analysis, and Quadratic Discriminant 

Analysis. Cross-validation tests were carried out 3 

times - 2/3 for learning and 1/3 for test. To assess 

the output we used Precision, i.e. the proportion of 

instances predicted as positives that were correctly 

evaluated, Recall, i.e. the proportion of positive 

instances that were correctly evaluated, and F1-

score, the harmonic mean of precision and recall. 

The harmonic mean is used instead of the arithmetic 

mean because the latter compensates low values for 

precision and with high values for recall. On the 

other hand, with harmonic mean we will always 

have low values if either precision or recall is low. 

 After a thorough investigation we have selected 

Random Forest algorithm which uses perturb-and-

combine techniques specifically designed for trees. 

This means a diverse set of classifiers is created by 

introducing randomness in the classifier 

construction. The prediction of the ensemble is 

given as the averaged prediction of the individual 

classifiers. Station results are shown in the table. 

 We have tested two sets of parameters used for 

signal classification. First set included only 

parameters which were associated with detections: 

CC, SNRCC, SNR, residuals of azimuth and 

slowness, etc. In the second set, we also used the 

number of arrivals associated with a given valid or 

false event, the averaged and cumulative CC for this 

event.  

 For the first set, the XSEL includes 166 REB-

compatible events from the total of 285 in the 

official REB. In this XSEL, there were 153 events 

having 3 and more arrivals within 4 s from the 

arrivals in one REB event, and 159 events with 2 

and more found REB arrivals. Essentially, the XSEL 

based only on detection parameters can find only 

REB events.  

 The second set of parameters produced 10,145 

XSEL events and, after application of the 

classification based on the results of Random Forest 

training, the final XSEL included 349 REB-

compatible events. In this XSEL, 86 events had 3+ 

arrivals in the REB, and 143 events 2+ arrivals.  

 In order to achieve higher performance and 

XSEL reliability we have to merge both approaches. 
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