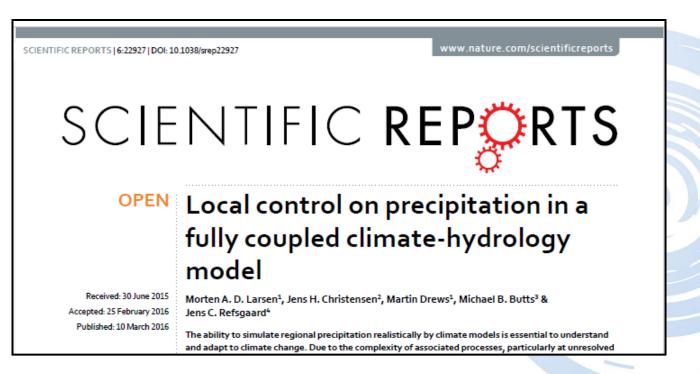


On the hydrological performance in preparation for fully coupled climate-hydrology modelling in a data-sparse region

M.A.D. Larsen¹, A. Senatore², M. Drews¹ and G. Mendicino²

¹ Technical University of Denmark, Dep. of Management engineering ² University of Calabria,
Department of Environmental and Chemical Engineering

UNIVERSITÀ DELLA CALABRIA



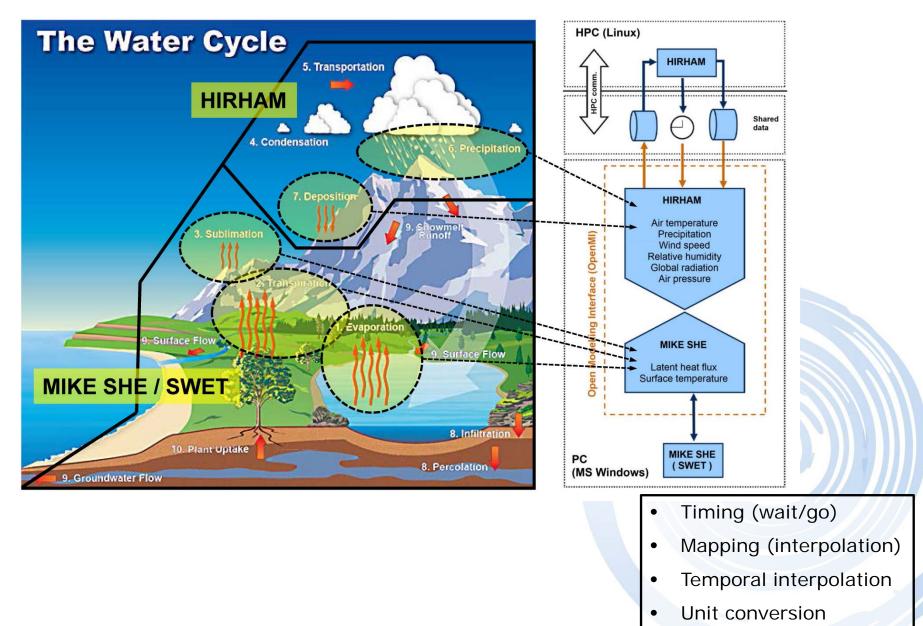
Technical University of Denmark

Motivation and background

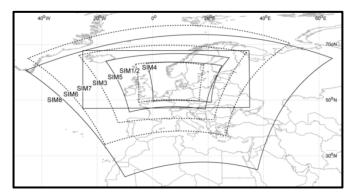
Successful study in Denmark (Skjern river, 2500km²) dynamically coupling MIKE SHE (hydrology+land surface) and HIRHAM (RCM) utilizing improvements in process representation and spatio-temporal scales in the subsurface/land surface/atmosphere water and energy feedback loop

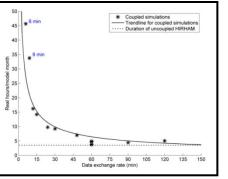
= Diminished precipitation bias (long term and extreme)

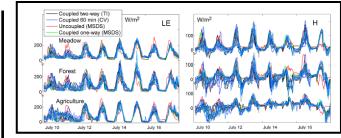
Motivation and research questions

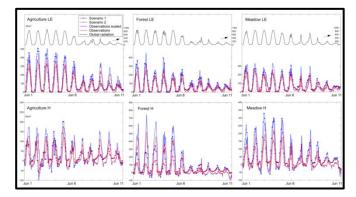

- Coupled and advanced atmosphere-hydrology models require a wide range of data for both forcing and validation.
- High quality is required; 1) spatial coverage and resolution, 2) temporal resolution, 3) representation of local attributes and, of course, 4) truthfulness. *Garbage in = garbage out.*
- Studies often for areas with good data coverage.

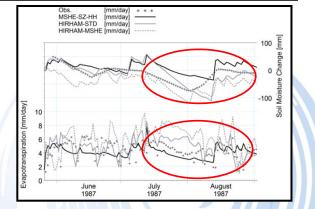
In this light;


- 1. What are the prospects of doing coupled hydrology-climate runs for areas of poorer data availability and quality?
- 2. <u>Is it feasible to even apply coupled modelling if only large scale gridded</u> <u>data sets are available?</u>
- 3. <u>Can the coupled setup perform equally well in a non-groundwater</u> <u>dominated catchment (Italy vs Denmark)?</u>

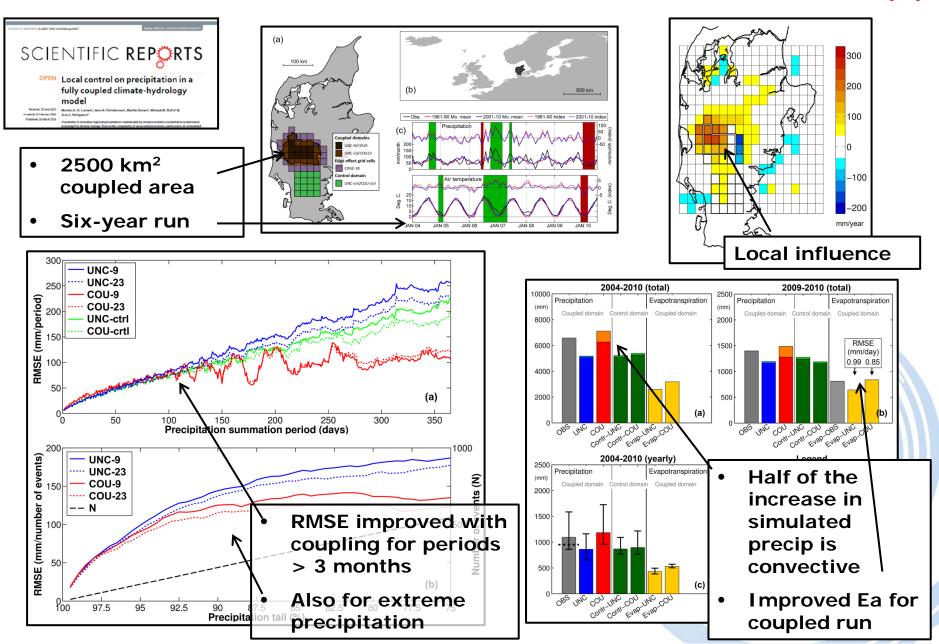

Danish MIKE SHE-HIRHAM studies – model concept


Danish MIKE SHE-HIRHAM studies (1)

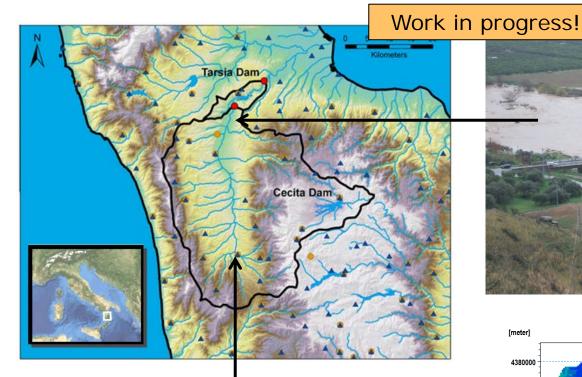

HIRHAM domain selection: Larsen, MAD et al. (2013): On the role of domain size and resolution in the simulations with the HIRHAM region climate model. Clim. Dyn. 40, 2903-2918


Coupled methodology: (2014): Butts, M et al. Embedding complex hydrology in the regional climate system -Dynamic different coupling across modelling domains. Adv. Water Resour. 74, 166–184

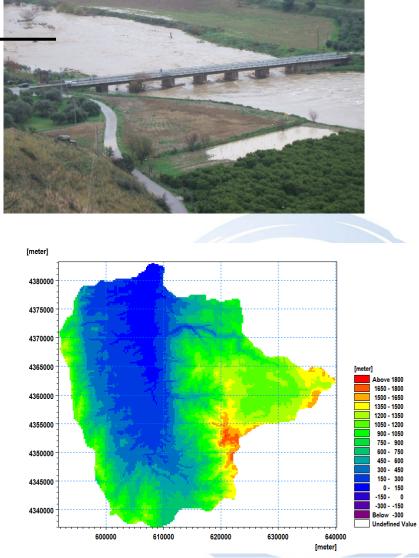
Coupled setup benchmarking, tests and variability: Larsen, MAD et al. (2014): Results from a full coupling of the HIRHAM regional climate model and the MIKE SHE hydrological model for a Danish catchment. Hydrol. Earth Syst. Sci. 18, 4733–4749


MIKE SHE calibration: Larsen, MAD et al. (2016): Calibration of a distributed hydrology and land surface model using energy flux measurements. Agr. Forest Meteorol. 217, 74–88

Proof of concept: MIKE SHE more skilfully reproduces soil moisture and evapotranspiration compared to HIRHAM. Larsen MAD et al. (2016): Assessing the influence of groundwater and land surface scheme in the modelling of land surfaceatmosphere feedbacks over the FIFE area in Kansas, USA. Environ. Earth. Sci., 75:130


DTU

Danish MIKE SHE-HIRHAM studies (2)



Crati River catchment

Study area

Crati river (1260 km²) used to highlight the above due to:

- Reasonable data availability (discharge, a flux tower station, climate stations and gridded data products such as ERA-I, E-OBS, SWBM and RCM output) – although with problems (lack of temporal overlap, gap filling, availability, hydrogeological interpretations and land use)
- 2. The location (the Mediterranean) previously been shown to exhibit biases which potentially could be reduced in a coupled setup
- Complicated orography/microclimate test case (poorly represented in models)
- 4. WRF-Hydro model runs have been performed enabling the possibility for comparisons

DTU

MIKE SHE model

Processes

- •Overland flow (finite difference)
- •Rivers/lakes (fully dynamic Saint-venant equation)
- Unsaturated flow (2D Richards equation)
- •Evapotranspiration (Shuttleworth.Wallace 2 layer equations)
- •Saturated flow (3D finite difference)
- •Dynamic reduction of time step for precipitation events

Setup

- 1 hour time step (4 hour for saturated flow) (reduced with rainfall)
- 250m resolution

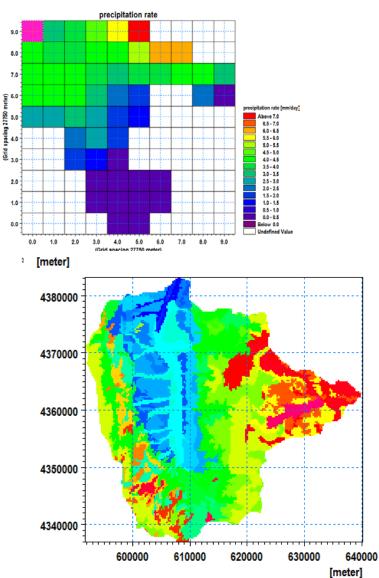
MIKE SHE calibration steps

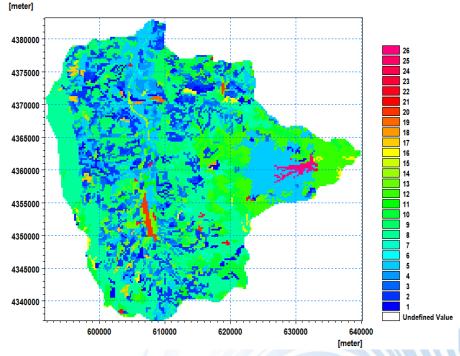
- Parameter intervals from literature
- Local sensitivity analysis (manually investigating parameter space) and also including correlation matrix
- RMSE output measure weighted sum of squares objective function
- Relatively short calibration period (5 months with 6 months unsat/sat spinup)
- Inverse modelling based on a maximum of 72 model evaluations (computation time) and 2 parameters (at a time)
- = Focus (here) more on performance in relation to forcing than best possible model (that could follow later on)

Data

n'	TT.	
U		U
•	-	•
-		-

	Variable	Resolution		Comments			
FORCING	Variable	spatial	Temporal				
EOBS	Precip	0.25 deg	Daily				
EOBS	Air Temp	0.25 deg	3h				
EOBS	Surf. Pres.	0.5 deg	Daily				
ERAI	Global Rad.	Single cell	12h				
ERAI	Wind speed	Single cell	Monthly				
HADISDH	Rel Humidity	Single cell	Monthly				
Station based	All six	2-10 in catchment	Hourly				
Cali / Vali							
SWBM	Ea	0.5 deg	Daily	Model based			
Flux tower	LH	Point	30 min	ONLY 2012 AND located just outside the catchment!			
Local obs.	Q	Point downstream	Hourly	ONLY 2001-2006!			


More? Satelite data?


Complication

DTU

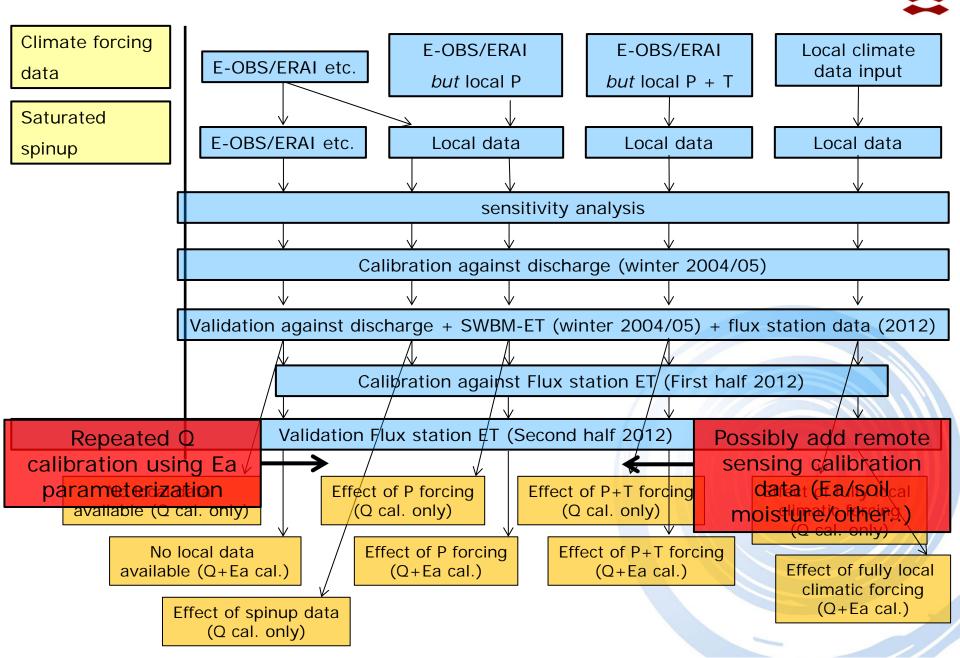
Input data examples

E-OBS (0.25°)

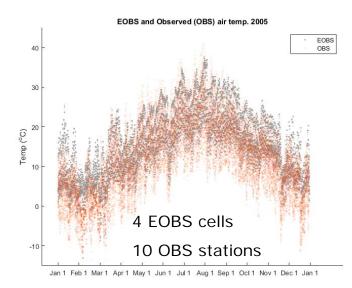
Corine land cover

Unsaturated soil classes

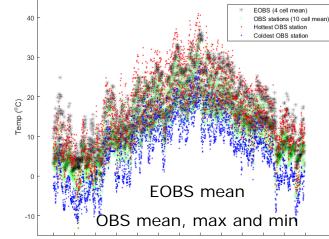
Vegetation parameterization

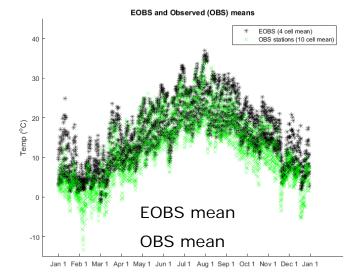


Corine land cover (initial) land surface parameterization

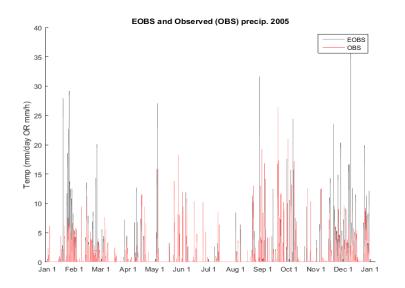

Ratios are kept constant in the calibration proces

	Land use	Albedo	Min stomata resistance	LAI	zOs	Root depth	Ext. factor	Vegetation height
	%		m/s	m²/m²	m	mm		m
Transitional woodland-shrub	3.2	0.175	150	4.5	0.84	2	0.66	4
Annual crops associated with permanent crops	9.1	0.125	130	3	0.05	0.5	0.5	0.5
Land principally occupied by agriculture, with significant areas of natural vegetation	5.4	0.125	150	3	0.05	0.5	0.5	0.5
Complex cultivation patterns	5.6	0.125	100	2.5	0.05	0.5	0.5	0.5
Non-irrigated arable land	13.9	0.125	90	3	0.025	0.25	0.5	0.25
Vineyards	0.0	0.2	140	1.5	0.2	1	0.25	2
Sclerophyllous vegetation	0.5	0.175	200	4.2	1.23	4	0.5	12.3
Broad-leaved forest	26.3	0.175	150	4.5	1.23	4	0.5	12.3
Olive groves	11.6	0.15	240	3.5	1	2	0.33	10
Mixed forest	8.8	0.175	215	4.5	1.23	4	0.5	12.3
Industrial or commercial units	0.6	0.175	100	0.1	0.01	0.1	0.5	0.1
Coniferous forest	8.7	0.175	150	4.5	1.23	4	0.5	12.3
Discontinuous urban fabric	2.9	0.25	100	1	0.2	1	0.5	2
Beaches, dunes, sands	0.2	0.4	100	0.1	0.01	0.01	0.1	0.1
Fruit trees and berry plantations	0.1	0.175	240	3.5	1.23	4	0.5	12.3
Natural grasslands	0.8	0.16	120	2	0.04	0.4	0.5	0.4
Pastures	0.7	0.175	190	3	0.025	0.25	0.5	0.25
Mineral extraction sites	0.1	0.3	100	0.1	0.01	0.1	0.5	0.1
Sparsely vegetated areas	0.1	0.3	100	0.25	0.02	0.1	0.1	0.2
Continuous urban fabric	0.5	0.175	100	0.1	0.01	0.1	0.5	0.1
Permanently irrigated land	0.0	0.125	85	4	0.05	0.5	0.5	0.5
Burnt areas	0.0	0.3	100	0.1	0.02	0.1	0.1	0.2
Sport and leisure facilities	0.1	0.15	100	2	0.03	0.3	0.5	0.3
Road and rail networks and associated land	0.1	0.2	100	0.1	0.01	0.1	0.5	0.1
Construction sites	0.0	0.2	100	0.1	0.01	0.1	0.5	0.1
Water bodies	0.6	0.1	1	0	0	0	0	0

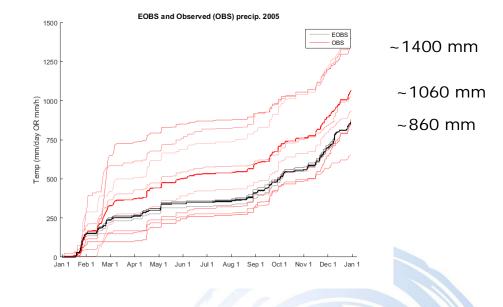

Model runs (scenarios for data availability)


Input data – Air Temp (2005 example)

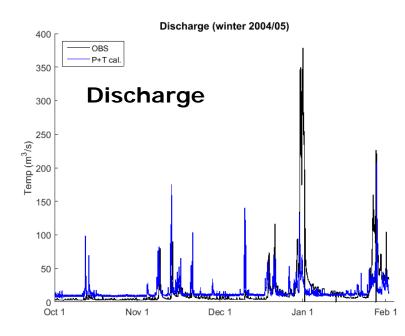
EOBS and Observed (OBS) means including max and min OBS series


Jan 1 Feb 1 Mar 1 Apr 1 May 1 Jun 1 Jul 1 Aug 1 Sep 1 Oct 1 Nov 1 Dec 1 Jan 1

Quite some variation within the station data that is not captured by the EOBS data set

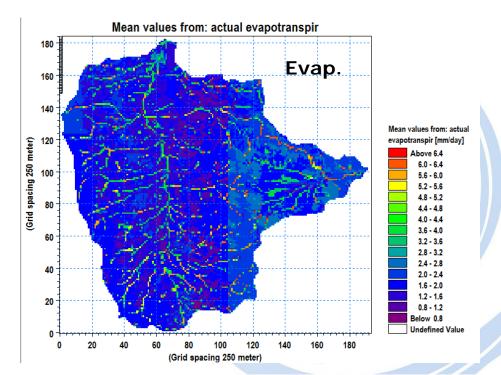


Input data – Precip (2005 example)


EOBS somewhat resembles 7 precip stations (with 200 mm/year) whereas 3 stations are consistently higher (app. 550 mm/year)

All for 2005

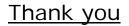
DTU


Output

Steps for improvement

- 5 months calibration (short)
- Simple geology
- Not calibrated for Ea (only Q)
- Still need to add four locally observed variabled

Nash Sutcliffe ≈ 0.3 with run using local P+T and large scale Wind, Glob Rad, RH and Surf Pres



Conclusions

DTU

- Data input severely affects model outcome (no surprise)
- Several factors are likely to inhibit the land surface performance of the Crati river case as compared to the Danish study:
 - 1. Knowledge on hydrogeology
 - 2. Surface data; number of Q gauging- and flux tower stations
 - 3. 'Man hours in calibration / funding'

- Possibility for satisfying daily, as opposed to sub-daily, water/energy reproduction also with further model refinements (geology)
 - Studies on the influence of the land surface temporal resolution on RCM simulations remains for this setup

