A Cloud Robotics Based Service for Managing RPAS in Emergency, Rescue and Hazardous Scenarios

Mario Silvagni, Politecnico di Torino DIMEAS
Mechatronics Laboratory
POLITECNICO DI TORINO – Torino/Verrés

- 25 people Staff

- Research fields
 - Magnetic Suspensions
 - Rotordynamics
 - Control Units for Mechatronics Applications
 - Magnetic Damping Technologies
 - Power and Special Actuators
 - UAVs and UASs
 - Custom Payload and Architectures for UAVs
Agenda

- Mechatronics Lab
- Motivation
- The Cloud Robotics Approach
- RPAS & Cloud
- Application Examples
 - Search and Rescue
 - Imaging Survey
- Conclusion
Motivation

- RPAS need:
 - Switching from piloting to autonomous flight
 - Moving to remote control or management
 - Deal with complex scenarios
 - Manage big amount of data
 - Interact and deploy data to several users

- Cloud robotics and cloud services allow:
 - Switching from “local” to “centralized” intelligence
 - Interact with user at various level
 - Managing different kind of “robots” and services
 - High computational capability and data storage
 - Share knowledge and information
The Cloud Robotics Approach

Cloud Robotics

- Shared approach
- Reliable RPAS
- Reliable architecture
- Low com latencies
- High data bandwidth
RPAS Cloud Architecture: Main Capabilities

- **RPAS monitoring**
 - Real time
 - Missions database and backup
 - Real time video deployment
 - Data collection and deployment
 - Virtual transponder

- **Validated Mission Planning**
 - Including terrain profile
 - Including known “obstacles” and constraints
 - Data fusion with other Database

- **Resources sharing**
 - RPAS status for dynamic mission planning
 - Sensors measurement sharing
Application Examples

- **Search and Rescue (Fly4SmartCity)**
 - Complete automatic Remote Mission
 - RPAS platform independent
 - Final User start the “emergency”
 - Automatic Planning and Validation
 - Live Video&Data streaming with 4G
 - Remote Mission control
 - Multi-client data deployment

- **Imaging Survey**
 - Hybrid Mission (*in situ* RPAS crew)
 - Validate mission is retrieved from cloud
 - Crew manages the “flight”
 - Acquired data are forwarded to cloud
 - Data is checked
Search and Rescue: Fly4SmartCity DEMO

0. Continuous Monitoring

1. “Emergency” Message (App)

2. Coherent Plan
 - Start Mission
 - Monitor Fly
 - Collect Data
 - Update Plan

3. Coordinate teams
 - Deploy Data
 - Share information
 - Get more data

...... additional services
Search and Rescue: Fly4SmartCity
Automated Imaging Survey

1. Crew&RPAS Set-Up
 Local site Check

2. Validate Plan
 Start Mission (crew)
 Monitor Fly (crew&cloud)

3. Data Collection
 Data preliminary validation
Data Processing

- **Data (images&fly-data) are received in cloud**
 - During flight with a proper resolution according communication bandwidth
 - Flight performances is checked
 - Images is checked (overlapping, exposure, incoherencies...)
 → if check is OK crew proceed to the following mission
 - After flight with original resolution for further processing

- **Data processing and Exploiting**
 - Common Automated (Manual) processing
 - Data are available for users
Conclusions

- Architecture and Technologies validated in different scenarios
- RPAS independent
- Rely on 4G or other transmission technologies (up to SAT)
- Automated or Hybrid Remote Controlled
- Allow Data integration in «planning» and «processing»
- Can be customized to several scenarios:
 - S&R and Mapping
 - Disaster Management
 - Patrolling
 - Agricultural
 - Industrial
 - Home Land and Border Security
 - Mountain safety
Thank You

Mario Silvagni
Mechatronics Laboratory
Department of Mechanical and Aerospace Engineering (DIMEAS)
Politecnico di Torino - ITALY
E-mail: mario.silvagni@polito.it