
1. Introduction 

 

One of the most crucial issues in statistical hydrology is that of 

estimation of extreme rainfall. Based on asymptotic arguments from 

Extreme Excess (EE) theory, numerous studies have shown that the 

Generalized Pareto (GP) distribution can efficiently model rainfall 

excesses above sufficiently high thresholds. Yet, because no theoretical 

threshold value exists under pre-asymptotic conditions (i.e. from finite 

samples), several methods (or conservative assumptions, e.g. 

maintaining less than 5% of the empirical observations), have been 

applied to determine a proper threshold level u above which the GP 

assumption holds.   
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2. Review of approaches 

Figure 2: Application of the ‘‘failure-to-reject’’ method to the positive 

rainrates in Figure 1, using the W2 Cramér-von Mises statistic.  

2.1 Non Parametric methods: Gerstengarbe and Werner plot 

 

 

In this study, we review the most representative approaches from 

different types of threshold detection methods, and compare their 

efficiency when applied to 1714 over-centennial daily rainfall records 

from the NOAA-NCDC database. This is the first time that a detailed 

intercomparison of GP threshold detection methods is presented, 

followed by an application to rainfall records collected worldwide. 

Optimum threshold u*: the lowest possible threshold that ensures 

validity of the GP assumption.  

• include the maximum number of data points  reduce 

uncertainties in parameter estimation; 

• minimize biases due to the approximate validity of the GP 

assumption under pre-asymptotic conditions (i.e. finite samples).  

Figure 1: Application of MRLP to the positive 

rainrates extracted from a 126-year record of 

daily rainfall observations from Australia. 

Procedure: Plot the mean 

value of the excesses above 

different threshold levels u, 

and locate the starting point 

of approximate linearity. 

Limitation: No objective criterion to detect approximate linearity.  

  Not suited to analyze large data sets 

2.2 Graphical Methods: Mean Residual Life Plot (MRLP) 

 

 

Basis: Consider a random 

variable (RV) X that 

follows a GP distribution 

above threshold u*. RV Y = 

[X-u| X > u]  u > u* is also 

GP distributed with the 

same shape parameter ξ, 

and scale parameter that 

increases linearly with u. 
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Procedure: 1) Apply a sequential version of Mann-Kendall test to the 

differences of a sorted sample. 2) Delimit the extreme region of the 

data, by detecting the point where an ascending trend starts. 

• In general (exception: uniform distribution), the null Hypothesis of 

randomness (no trend) is invalid, from the beginning of the 

differentiated series.  Results with no statistical meaning  

• The adjacent differences of a sorted quantized sample is (mostly) a 

sequence of zeros.  Inconclusive results in hydrologic applications 

Limitations:  

2.3 Goodness-of-Fit-Based Methods: Failure-to-reject method 

 

 

Basis: Cramér-von Mises (W2) and Anderson-Darling (A2) statistics 

quantify the deviation between the empirical distribution and the 

selected theoretical model. 

Procedure: Start with the lowest possible threshold, and check the GP 

assumption (null Hypothesis) above increasing threshold levels u using 

the W2 and/or A2 statistics. Select the lowest threshold that the null 

hypothesis is not rejected. 

Limitation: The asymptotic distributions of W2 and A2 are affected by 

the existence of quantization in the data, leading to biased threshold 

estimates:   

 ratio =                                    
quantization level Δ 

scale parameter au 
 sample size 
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0 0.121 0.121 0.150 0.151 0.220 0.221 
continuous 

(Δ=0) 
0.1 0.115 0.116 0.143 0.143 0.209 0.210 

0.2 0.112 0.111 0.137 0.137 0.200 0.199 

0 0.128 0.165 0.158 0.199 0.229 0.288 
Δ=0.1 

scale=10 
0.1 0.118 0.156 0.143 0.187 0.211 0.262 

0.2 0.116 0.151 0.141 0.181 0.201 0.264 

0 0.218 1.000 0.256 1.074 0.349 1.231 
Δ=0.5 

scale=10 
0.1 0.212 0.947 0.248 1.016 0.343 1.169 

0.2 0.199 0.895 0.236 0.968 0.323 1.109 

5000 

500 

Table 1: Quantiles of W2 calculated using 10,000 synthetic realizations of GP 

samples (threshold u = 0, and scale parameter a0 = 10) with different sizes, shape 

parameter values and quantization levels. 
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95% confidence limits 

Same results 

as MRLP 

2.4 Hill-based methods: Jackson and Lewis modified kernel statistics 

 

 

Basis: Asymptotically, as x  , a log-transformed Pareto type 

variable is attracted to an exponential distribution with rate parameter 

equal to the Pareto tail index  log-log linear CCDF plot (Pareto-

quantile plot) with slope equal to the Pareto index.  

 Procedure: Use the Jackson and Lewis modified kernel statistics to 

detect the lowest threshold level above which the Pareto-quantile plot 

displays approximate linearity. Use Hill’s estimator to obtain the Pareto 

index (i.e. GP shape parameter).  

• Overestimates the optimum threshold, as the outcome ensures 

asymptotic linearity in a Pareto-quantile plot: a much stricter 

condition than the GP assumption.  

• Weak convergence to the asymptotic behavior for the case of GP 

samples with low shape parameter values (i.e. on the order of 0.1-0.2, 

as is the case of rainfall).   Biases in shape parameter estimates 

Limitations:  
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Figure 3: Pareto-quantile plot of 

a synthetic GP sample with u* =0, 

ξ=0.1, au=10 and sample size 105. 

 

3. Application to the NOAA-NCDC Daily Rainfall Dataset  
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Figure 4: (a) Probability density function of thresholds u*, estimated by applying 

the reviewed methods to 1714 rainfall records from NOAA-NCDC database, with 

more than 110 years of available observations; (b) Same as Figure 5a but for the 

shape parameter ξ.  

(b)  

Figure 5: Log-log plots 

of the empirical and 

theoretical CCDFs 

obtained for the positive 

rainrates of the 126-year 

daily rainfall record from 

Australia, used also in 

Figures 1 and 2. 

Hill-based methods lead to 

considerable overestimation 

of the empirical rainfall 

quantiles. 

 threshold overestimation  

Significant biases of shape 

parameter estimates even for 

considerably large sample 

sizes. Similar issues indicated 

in financial applications. 

 lp =1+ 
log[1-(1-p)

ξ
]

log[(1-p)
-ξ

]
 Convergence indicator for GP samples as 

a function of the probability level. 

overestimation due to 

weak convergence 

Overestimation due 

to asymptotic 

linearity  

when accounting for 

quantization, the “failure-

to-reject” method produces 

similar results to MRLP 

Example: station ID name: ASN00021043 

Limitation 

addressed! 
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4. Conclusions 

Methods 

MRLP A2 W2 MC A2 MC W2 LWS JCK 

threshold 
 mean 

6.68 

6.63 

13.91 

7.53 

10.11 

5.53 

6.50 

3.67 

6.37 

3.69 

34.68 

27.96 

39.43 

31.33 

 st. dev. 
6.69 

6.70 

8.14 

4.22 

7.25 

3.74 

7.47 

3.29 

6.59 

3.32 

16.71 

13.49 

20.01 

15.00 

shape  
 mean 

0.140 

0.137 

0.138 

0.150 

0.144 

0.159 

0.177 

0.192 

0.167 

0.186 

0.320 

0.359 

0.301 

0.338 

 st. dev. 
0.060 

0.073 

0.088 

0.096 

0.096 

0.094 

0.096 

0.103 

0.092 

0.103 

0.054 

0.068 

0.053 

0.066 

≥ 100 

≥ 40 

Table 2: Ensemble mean value and standard deviation of GP model parameters, 

estimated by applying the reviewed methods to 1714 rainfall records from 

NOAA-NCDC database, with more than 110 years of available observations 

(black). Values in blue have been obtained similarly, but after randomly 

eliminating 70 years from each analyzed station.  

• Gerstengarbe and Werner plot was proved theoretically inconsistent, 

while not applicable to quantized samples. 

• Hill’s assumption based methods lead to unrealistically high 

threshold estimates increased parameter estimation uncertainty. 

• Although the "failure-to-reject“ method is suited to the GP 

distribution, its sensitivity even to small levels of data quantization 

and to sample length variations, does not allow for routine 

applications. 

• MRLP is the most promising method, as based on GP distribution 

properties valid also under pre-asymptotic conditions, while 

demonstrating reduced sensitivity to the length of the available data 

and to low levels of data quantization. 

MRLP is the most robust approach, producing similar results. 

Intercomparison  

General comments 

•The existence of quantization in rainfall records, along with 

variations in their length, constitute the two most important factors 

that may significantly affect the accuracy of the obtained results.  

• For daily rainfall applications, GP threshold estimates range 

between 2-12 mm/d, with a mean value around 6.5 mm/d. 

• While several studies have used the 95% (or higher) empirical 

quantiles of the data, much lower threshold values (i.e. in our 

case maintaining more than 10% of the empirical observations) 

are also effective leading to reduced estimation variance of GP 

distribution parameters. 

Room for improvements to include statistical arguments. 

• Hill’s shape parameter estimates exhibit considerable biases due to 

the slow convergence of the log-transformed GP quantiles to those of 

an exponential distribution. This is particularly the case for 

rainfall: ξ on the order of 0.1-0.2. 
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