SMILE – New mission to image the magnetosphere

ESA/ESTEC (Netherlands), NSSC/CAS (China), MSSL - UCL (UK), Leicester U. (UK), Calgary U. (Canada), GSFC (USA), EASA/ESAC (Spain)

Introduction

The Solar wind Magnetosphere Ionosphere Link Explorer (SMILE) is a novel self-standing mission to be jointly developed between ESA and the Chinese Academy of Sciences (CAS).

It will observe the solar wind-magnetosphere coupling via X-ray images of the magnetosheath and polar cusps, UV images of global auroral distributions and simultaneous in situ solar wind/magnetosheath plasma and magnetic field measurements.

Remote sensing of dayside magnetosheath and the cusps with X-ray imaging is now possible thanks to the relatively recent discovery of solar wind charge exchange (SWCX) X-ray emission, first observed at comets, and subsequently found to occur in the vicinity of the Earth’s magnetosphere.

In particular, SMILE will address the following specific scientific questions:

• What are the fundamental modes of the dayside solar wind/ magnetosphere interaction?
• What defines the substorm cycle?
• How do CME-driven storms arise and what is their relationship to substorms?

Mission

SMILE will observe the solar wind-magnetosphere coupling via X-ray images of the magnetosheath and polar cusps, UV images of global auroral distributions and simultaneous in situ solar wind/magnetosheath plasma and magnetic field measurements.

SMILE will trace and link processes ranging from the solar wind to the distant magnetosphere.

Payload

SMILE is a novel self-standing mission to be jointly developed between ESA and the Chinese Academy of Sciences (CAS).

It will observe the solar wind-magnetosphere coupling via X-ray images of the magnetosheath and polar cusps, UV images of global auroral distributions and simultaneous in situ solar wind/magnetosheath plasma and magnetic field measurements.

Remote sensing of dayside magnetosheath and the cusps with X-ray imaging is now possible thanks to the relatively recent discovery of solar wind charge exchange (SWCX) X-ray emission, first observed at comets, and subsequently found to occur in the vicinity of the Earth’s magnetosphere.

In particular, SMILE will address the following specific scientific questions:

• What are the fundamental modes of the dayside solar wind/magnetosphere interaction?
• What defines the substorm cycle?
• How do CME-driven storms arise and what is their relationship to substorms?

Mission summary

• 3-axis stabilized spacecraft
• Orb: 1.842 R_E, geocentric distance, 70-90 deg., inclination, 51 h period
• Payload mass 55 kg, spacecraft total dry mass 660 kg, total wet mass 1997 kg
• Payload:
 • LIA (Light Ion Analyser) is a hot-spot analyser for detection of protons and alphas. Energy range 50 eV-20 keV
 • MAG (Magnetometer) is a flux-gate magnetometer with two sensors on a 2.3 m boom
 • SXI (Soft X-ray imager) is a wide field lobster-eye 0.2-1.2 keV X-ray imager. CCD detectors. 15 x 27 degree (TRB) FOV
 • UVI (UV imager) is a four mirror imager in the range 160-180 nm. CMOS detector
• Regions of interest:
 • 41 h around apogee over North pole
 • 41 h around apogee over North pole
 • 41 h around apogee over North pole
 • 41 h around apogee over North pole
• Launch event (on boom)
 • 14 UT N=15 cm^-3 V= 410 km/s
 • 04 UT N=15 cm^-3 V= 410 km/s
 • 04 UT N=15 cm^-3 V= 410 km/s
 • 04 UT N=15 cm^-3 V= 410 km/s
• Launch 2021, with Soyuz dual launch or Vega C.

payload module

• spacecraft with propulsion
• 3-axis stabilized spacecraft
• Orb: 1.842 R_E, geocentric distance, 70-90 deg., inclination, 51 h period
• Payload mass 55 kg, spacecraft total dry mass 660 kg, total wet mass 1997 kg
• Payload:
 • LIA (Light Ion Analyser) is a hot-spot analyser for detection of protons and alphas. Energy range 50 eV-20 keV
 • MAG (Magnetometer) is a flux-gate magnetometer with two sensors on a 2.3 m boom
 • SXI (Soft X-ray imager) is a wide field lobster-eye 0.2-1.2 keV X-ray imager. CCD detectors. 15 x 27 degree (TRB) FOV
 • UVI (UV imager) is a four mirror imager in the range 160-180 nm. CMOS detector
• Regions of interest:
 • 41 h around apogee over North pole
 • 41 h around apogee over North pole
 • 41 h around apogee over North pole
 • 41 h around apogee over North pole
• Launch event (on boom)
 • 14 UT N=15 cm^-3 V= 410 km/s
 • 04 UT N=15 cm^-3 V= 410 km/s
 • 04 UT N=15 cm^-3 V= 410 km/s
 • 04 UT N=15 cm^-3 V= 410 km/s
• Launch 2021, with Soyuz dual launch or Vega C.

payload module

• spacecraft with propulsion
• 3-axis stabilized spacecraft
• Orb: 1.842 R_E, geocentric distance, 70-90 deg., inclination, 51 h period
• Payload mass 55 kg, spacecraft total dry mass 660 kg, total wet mass 1997 kg
• Payload:
 • LIA (Light Ion Analyser) is a hot-spot analyser for detection of protons and alphas. Energy range 50 eV-20 keV
 • MAG (Magnetometer) is a flux-gate magnetometer with two sensors on a 2.3 m boom
 • SXI (Soft X-ray imager) is a wide field lobster-eye 0.2-1.2 keV X-ray imager. CCD detectors. 15 x 27 degree (TRB) FOV
 • UVI (UV imager) is a four mirror imager in the range 160-180 nm. CMOS detector
• Regions of interest:
 • 41 h around apogee over North pole
 • 41 h around apogee over North pole
 • 41 h around apogee over North pole
 • 41 h around apogee over North pole
• Launch event (on boom)
 • 14 UT N=15 cm^-3 V= 410 km/s
 • 04 UT N=15 cm^-3 V= 410 km/s
 • 04 UT N=15 cm^-3 V= 410 km/s
 • 04 UT N=15 cm^-3 V= 410 km/s
• Launch 2021, with Soyuz dual launch or Vega C.

Conclusion

SMILE will trace and link processes ranging from the solar wind to those acting on charged particles precipitating into the cusps and the polar ionosphere

SMILE observes magnetic field, X-rays and UV images of the magnetosheath and auroras

Cooperation with China: SMILE is a showcase, building on Double Star experience