8749

1) Motivation

- ▶ Different inverse solvers give us different results
- ► Only a few solvers are freely available for academia
- ▶ New solvers should harness modern HPC to work with complex models and large datasets

2) Inverse problem

Mathematical formulation

- Let $\mathbf{m} = (m_1, m_2, \dots, m_n)$ be a vector of model parameters i.e $\sigma(x, y, z) = \nu(\mathbf{m})$
- Weighted residual: $R(\mathbf{m}) = \|f(\mathbf{m}) \mathbf{d}^{obs}\|_W$
- Objective function: $F(\mathbf{m}) = R^2(\mathbf{m}) + \lambda \Omega(\mathbf{m})$
- Main stabilizer Ω property: the set $\Omega(\mathbf{m}) < C$ is compact [1]
- $> \lambda > 0$ is a regularization parameter

Target: find $\operatorname{argmin} F(\mathbf{m})$

Main challenges

- \blacktriangleright Choosing stabilizer Ω
- Choosing parametrization ν
- ► Fast solving of the nonlinear optimization problem: • Fast calculation of R i.e. fast forward problem solving • Fast calculation of the gradient of F

3) Inverse solver ExtrEMeJoyMT

Main features

- 1. Large set of stabilizers
- 2. Flexible "mask" parametrization (see Section 6)
- 3. Parallel IE solver for forward modelling
- 4. Adjoint approach for gradient calculation
- 5. BFGS method for optimization
- 6. Multi-language paradigm

Forward solver

$$\mathbf{E}(M) = \int_{T} \widehat{G}_{E}(M, M_{0}) \Delta_{\sigma}(M_{0}) \mathbf{E}(M_{0}) dT_{M_{0}} + \mathbf{E}^{0}(M)$$
$$\mathbf{H}(M) = \int_{T} \widehat{G}_{H}(M, M_{0}) \Delta_{\sigma}(M_{0}) \mathbf{E}(M_{0}) dT_{M_{0}} + \mathbf{H}^{0}(M)$$
(1)

$$\Delta_{\sigma}(M_0) = \sigma(M_0) - \sigma_b(M_0)$$

Two different IE based solvers are implemented:

- ExtrEMeMT (cf. [3])
- ► Based on collocation approach
- ▶ Parallel and sequential modes
- ► Faster at small number of nodes
- ► Only parallel mode

▶ Based on Galerkin approach

▶ Faster at hundreds and thousands of nodes

GIEM2G (cf. [2])

Stabilizer

$$\begin{split} \Omega &= \int_{V_{inv}} \alpha(x, y, z) \sigma_a^2(x, y, z) dx dy dz + \\ &\int_{V_{inv}} \frac{\beta(x, y, z)}{\sigma_a^2(x, y, z)} dx dy dz + \\ &\int_{V_{inv}} \gamma(x, y, z) |\operatorname{\mathbf{grad}} \log \sigma(x, y, z)|^2 dx dy dz \\ &\alpha > 0 \quad \beta \ge 0 \quad \gamma \ge 0 \end{split}$$

Functions α, β, γ are under researcher control

4) True model

- ▶ Due to IE approach only anomaly domain is discretized
- ► $N_x=280$, $N_y=320$, $N_z=232$, cubic cells with 25 m edges
- \triangleright 225 receivers at uniform grid with 1km step
- ▶ 16 frequencies from 10^{-4} to 10^2

(2)

The novel high-performance 3-D MT inverse solver

Mikhail Kruglyakov^{1,2}, Alexey Geraskin², Alexey Kuvshinov²

¹Lomonosov Moscow State University, ²Institute of Geophysics, ETH Zurich

5) Inversion results

- ▶ Both impedances and tippers were inverted together
- \blacktriangleright 5% random noise was added to the responses
- ▶ Modelled domain is $16 \times 16 \times 10$ km

Section at z = 2500m Y km 6 8 10 12 14 16 15 $X^{\scriptscriptstyle \pm}$ km

- used in forward modelling
- \blacktriangleright Final nRMS=0.84, 169 iterations

- Inverse domain contains $20 \times 20 \times 40$ cells, i.e. one inverse cell is merge of $8 \times 8 \times 4$ cells Inverse domain contains $80 \times 80 \times 120$ cells, i.e. one inverse cell is merge of $2 \times 2 \times 1$ cells used in forward modelling
 - Final nRMS=0.87, 104 iterations

6) Mask parametrization

- One element of inverse domain i.e. m_k is the union of cells from forward modelling domain
- ► The rule how to merge cells is defined by researcher

New 3D inverse solver ExtrEMeJoyMT is presented:

- ► Flexible inversion domain parametrization
- ► Wide class of stabilizers
- ► Two modern IE solvers for forward problems
- ► Adjoint approach for gradient calculation
- ▶ Perfect scalability on HPC
- 9) Contacts

m.kruglyakov@gmail.com

Nodes

Feel free to take my card and email me

10) References

- [1] Tikhonov, A. N. & Arsenin, V. Y. Solutions of Ill-Posed Problems. Wiley, New York, 1977
- [2] Kruglyakov, M. & Bloshanskaya, L. High-performance parallel solver of electromagnetics integral equations based on Galerkin method. Mathematical Geoscience, also at http://arxiv.org/abs/1512.06126, under review (2016).
- [3] Geraskin, A., Kruglyakov, M. & Kuvshinov, A. Novel robust and scalable 3-D EM forward solver based on contracting integral equation method and modern programming techniques. Computers & Geoscience, under review (2016).