Regional Mapping, Modelling, and Monitoring of Tree Aboveground Biomass Carbon

Andrew T. Hudak - USFS Rocky Mountain Research Station
Patrick A. Fekety - University of Minnesota
Michael J. Falkowski - Colorado State University
Nicholas L. Crookston - Private Forestry Consultant
Alistair M.S. Smith, Patrick Mahoney, Luigi Boschetti, Lianzhi Huo - University of Idaho
Robert E. Kennedy, Tara Larrue - Oregon State University
Christopher Woodall - USFS Northern Research Station
Nancy Glenn – Boise State University
Van Kane – University of Washington
Sangram Ganguly – NASA Ames Research Center
Objectives and Overview of Approach

– Develop a Carbon Monitoring System (CMS) that uses Random Forests (RF) to map aboveground biomass (AGB) at two scales:
 • Landscape level, with following input data:
 – Field plot measures of AGB
 – Light Detection and Ranging (LiDAR) metrics
 • Regional level, annually, with following input data:
 – Landscape-level AGB maps
 – Landsat based detection of trends in disturbance and recovery (LandTrendr) metrics
 – Shuttle Radar Topography Mission (SRTM) 30-m topographic metrics
 » Except elevation
 – Physiologically relevant climate variables

– Develop a Validation Protocol for Monitoring, Reporting, and Verification (MRV)
 • Aggregate annual, regional AGB maps to county level
 • Compare against annual, county-level Forest Inventory and Analysis (FIA) estimates of AGB available nationally, calculate biases
Light Detection and Ranging (LiDAR) point cloud at the scale of a 400 m² forest inventory plot in northern Idaho.
Height Metrics

LDV - VI 63 - USDA Forest Service - Pacific Northwest Research Station

Maximum Canopy Height
95th percentile

Mean Canopy Height

Height Cutoff (1.37 m)
Height Metrics

Density Metrics

Returns in stratum s

Total returns

X 100

“Living” Database of Project-Level Reference Plots

P. A. Fekety
Predict Attributes at Unsampled Locations

\[U - 1 \sim \mathcal{A} - 3 \]

M. J. Falkowski, P. A. Fekety
Landscape-Level Approach

Regional-Level Approach
LandTrendr (LT) data

- LandTrendr - Landsat based detection of trends in disturbance and recovery algorithm (Kennedy et al., 2010)
- Input: Annual Landsat images stacked from 1984-2012
- Output: Trajectories describing trends for each 30-m pixel from multiple spectral variables
- Primary predictors we are using for annual AGB prediction are the tasselled cap indices:
 - Brightness
 - Greenness
 - Wetness
- Other important LT metrics:
 - Magnitude of greatest disturbance
 - Time since disturbance

http://landtrendr.forestry.oregonstate.edu/content/how-landtrendr-works
Landscape-Level Random Forests (RF) Model

LiDAR Project-Level RF Model

- ELEVSTRATA1000TO2000RETURNPROPORTION
- PERCENTAGEFIRSTRETURNSABOVE137
- ELEVSTRATAABOVE3000RETURNPROPORTION
- mmin_tenths
- ELEVSTRATA2000TO3000RETURNPROPORTION
- ELEV50
- ELEV95
- ELEVSTDDEV
- ELEVVAR
- ELEVDISTANCE
- mmin tenth
- ELEVVAR
LiDAR Project-Level RF Model

R^2 = 0.659
Uncertainty in 30-m ABG (Mg/ha) Map Cells Predicted from LiDAR

One Landscape (Moscow Mt.)

All N. Idaho Landscapes
Regional-Level Random Forests (RF) Model

Regional-Level RF Model

SSinAsp
sprp
MagOfLastDisturb
globRadEquinox
w_t
b_t
g_t
mapdd5
map

%IncMSE

w_t
b_t
sprp
SSinAsp
g_t
globRadEquinox
mapdd5
map
MagOfLastDisturb

IncNodePurity
Note: Green labels are ecoregion identifiers
<table>
<thead>
<tr>
<th>County</th>
<th>Year</th>
<th>FIA</th>
<th>Predictions</th>
<th>%Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID-Benewah</td>
<td>2010</td>
<td>111.6</td>
<td>138.5</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>117.6</td>
<td>136.5</td>
<td>16</td>
</tr>
<tr>
<td>ID-Bonner</td>
<td>2010</td>
<td>119.1</td>
<td>149.7</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>123.3</td>
<td>149.9</td>
<td>22</td>
</tr>
<tr>
<td>ID-Boundary</td>
<td>2010</td>
<td>128.6</td>
<td>152.8</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>131.7</td>
<td>153.3</td>
<td>16</td>
</tr>
<tr>
<td>ID-Clearwater</td>
<td>2010</td>
<td>129.4</td>
<td>159.5</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>131.6</td>
<td>159.8</td>
<td>21</td>
</tr>
<tr>
<td>ID-Idaho</td>
<td>2010</td>
<td>78.6</td>
<td>144.3</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>78.6</td>
<td>144.0</td>
<td>83</td>
</tr>
<tr>
<td>ID-Kootenai</td>
<td>2010</td>
<td>122.1</td>
<td>146.6</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>122.1</td>
<td>145.6</td>
<td>19</td>
</tr>
<tr>
<td>ID-Latah</td>
<td>2010</td>
<td>111.6</td>
<td>145.3</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>115.0</td>
<td>143.4</td>
<td>25</td>
</tr>
<tr>
<td>ID-Lewis</td>
<td>2010</td>
<td>52.7</td>
<td>107.6</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>51.5</td>
<td>108.7</td>
<td>111</td>
</tr>
<tr>
<td>ID-Nez Perce</td>
<td>2010</td>
<td>52.9</td>
<td>111.2</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>52.2</td>
<td>111.8</td>
<td>114</td>
</tr>
<tr>
<td>ID-Shoshone</td>
<td>2010</td>
<td>149.9</td>
<td>163.7</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>149.7</td>
<td>163.8</td>
<td>9</td>
</tr>
<tr>
<td>WA-Asotin</td>
<td>2010</td>
<td>-</td>
<td>122.3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>91.9</td>
<td>122.5</td>
<td>33</td>
</tr>
<tr>
<td>WA-Garfield</td>
<td>2010</td>
<td>-</td>
<td>126.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>87.7</td>
<td>125.3</td>
<td>43</td>
</tr>
<tr>
<td>WA-Pend Oreille</td>
<td>2010</td>
<td>-</td>
<td>149.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2011</td>
<td>140.9</td>
<td>150.5</td>
<td>7</td>
</tr>
</tbody>
</table>
Conclusions, Next Steps

• Workflow has been developed to predict AGB across large spatial extents from historical Landsat images, using LiDAR-mapped 30-m AGB pixels as reference observations, and 30m pixels without lidar as target observations.

• Current annual predictions are higher than annual county-level FIA reports. Why?
 – Disturbance dynamics
 • Include LandTrendr time-since-last disturbance metric, delta metrics
 – What is “forest” vs “non-forest”?
 • Include tree cover mapped from high resolution airborne imagery
 • Landsat-based National Land Cover Database (NLCD) map has local inaccuracies
 – Gaps within forest matrix (commission errors)
 – Tree islands within non-forest matrix (omission errors)
 – FIA doesn’t inventory non-forest trees... but they’re out there!
Acknowledgements

NASA Carbon Monitoring Systems Program
Kootenai-Shoshone Soil and Water Conservation District
Idaho Department of Lands
National Science Foundation EPSCOR - MILES
University of Idaho
USFS Idaho Panhandle National Forest
USFS Rocky Mountain Research Station