^{BG4.9} Regional Mapping, Modelling, and Monitoring of

Tree Aboveground Biomass Carbon

EGU2016-9261

(cc)

Andrew T. Hudak - USFS Rocky Mountain Research Station Patrick A. Fekety - University of Minnesota Michael J. Falkowski - Colorado State University Nicholas L. Crookston - Private Forestry Consultant Alistair M.S. Smith, Patrick Mahoney, Luigi Boschetti, Lianzhi Huo - University of Idaho Robert E. Kennedy, Tara Larrue - Oregon State University Christopher Woodall - USFS Northern Research Station Nancy Glenn – Boise State University Van Kane – University of Washington Sangram Ganguly – NASA Ames Research Center

Objectives and Overview of Approach

- Develop a Carbon Monitoring System (CMS) that uses Random
 Forests (RF) to map aboveground biomass (AGB) at two scales:
 - Landscape level, with following input data:
 - Field plot measures of AGB
 - Light Detection and Ranging (LiDAR) metrics
 - Regional level, annually, with following input data:
 - Landscape-level AGB maps
 - Landsat based detection of trends in disturbance and recovery (LandTrendr) metrics
 - Shuttle Radar Topography Mission (SRTM) 30-m topographic metrics
 - » Except elevation
 - Physiologically relevant climate variables

 Develop a Validation Protocol for Monitoring, Reporting, and Verification (MRV)

- Aggregate annual, regional AGB maps to county level
- Compare against annual, county-level Forest Inventory and Analysis (FIA) estimates of AGB available nationally, calculate biases

Light Detection and Ranging (LiDAR) point cloud at the scale of a 400 m² forest inventory plot in northern Idaho

Field photo of same plot as depicted on the left

Height Metrics

Maximum Canopy Height 95th percentile

Mean Canopy Height

Height Cutoff (1.37 m)

USDA Forest Service, Remote Sensing Applications Center, http://fsweb.rsac.fs.fed.us

Height Metrics

Density Metrics

USDA Forest Service, Remote Sensing Applications Center, http://fsweb.rsac.fs.fed.us

Returns in stratum s X 100 **Total returns**

S

"Living" Database of Project-Level Reference Plots

Predict Attributes at Unsampled Locations

M. J. Falkowski, P. A. Fekety

Landscape-Level Approach

Falkowski et al. (2009) Remote Sensing of Environment 113: 946-956.

Regional-Level Approach

LandTrendr (LT) data

- LandTrendr Landsat based detection of trends in disturbance and recovery algorithm (Kennedy et al., 2010)
- Input: Annual Landsat images stacked from 1984-2012
- Output: Trajectories describing trends for each 30-m pixel from multiple spectral variables
- Primary predictors we are using for annual AGB prediction are the tasselled cap indices:
 - Brightness
 - Greenness
 - Wetness
- Other important LT metrics:
 - Magnitude of greatest disturbance
 - Time since disturbance

http://landtrendr.forestry.oregonstate.edu/content/how-landtrendr-works

Landscape-Level Random Forests (RF) Model

LiDAR Project-Level RF Model

LiDAR Project-Level RF Model

RF Predicted AGB [Mg/ha]

Uncertainty in 30-m ABG (Mg/ha) Map Cells Predicted from LiDAR

Regional-Level Random Forests (RF) Model

Regional-Level RF Model

Regional-Level RF Model

RF Predicted AGB [Mg/ha]

Carbon Monitoring Systems Program

Note: Green labels are ecoregion identifiers

	AGB [Mg / ha]				
County	Year	FIA	Predictions	%Bias	
ID-Benewah	2010	111.6	138.5	24	
	2011	117.6	136.5	16	F
ID-Bonner	2010	119.1	149.7	26—	-
	2011	123.3	149.9	22	1
ID-Boundary	2010	128.6	152.8	19	
	2011	131.7	153.3	16	
ID-Clearwater	2010	129.4	159.5	23	E
	2011	131.6	159.8	21	
ID-Idaho	2010	78.6	144.3	84	
	2011	78.6	144.0	83	
ID-Kootenai	2010	122.1	146.6	20	
	2011	122.1	145.6	19	1
ID-Latah	2010	111.6	145.3	30	P
	2011	115.0	143.4	25	
ID-Lewis	2010	52.7	107.6	104	
	2011	51.5	108.7	111	2
ID-Nez Perce	2010	52.9	111.2	110	-
	2011	52.2	111.8	114	NezĮP
ID-Shoshone	2010	149.9	163.7	9	}
	2011	149.7	163.8	9	{
WA-Asotin	2010	-	122.3		
	2011	91.9	122.5	33	
WA-Garfield	2010	-	126.4		
	2011	87.7	125.3	43	
WA-Pend Oreille	2010	-	149.4		
	2011	140.9	150.5	7	

AGB 2011

Conclusions, Next Steps

- Workflow has been developed to predict AGB across large spatial extents from historical Landsat images, using LiDARmapped 30-m AGB pixels as reference observations, and 30m pixels without lidar as target observations
- Current annual predictions are higher than annual countylevel FIA reports. Why?
 - Disturbance dynamics
 - Include LandTrendr time-since-last disturbance metric, delta metrics
 - What is "forest" vs "non-forest"?
 - Include tree cover mapped from high resolution airborne imagery
 - Landsat-based National Land Cover Database (NLCD) map has local inaccuracies
 - Gaps within forest matrix (commission errors)
 - Tree islands within non-forest matrix (omission errors)
 - FIA doesn't inventory non-forest trees... but they're out there!

Acknowledgements

NASA Carbon Monitoring Systems Program Kootenai-Shoshone Soil and Water Conservation District Idaho Department of Lands National Science Foundation EPSCOR - MILES University of Idaho USFS Idaho Panhandle National Forest USFS Rocky Mountain Research Station