Motivation

- Biogeochemical models that explicitly consider functional traits and physiology of microorganisms are complex
- Mathematical analysis provides a leverage point to reduce the complexity of models and fosters understanding of qualitative system behavior
- We analyze the PECCAD model applying methods from the field of dynamic systems theory in order to gain a holistic understanding of microbial dynamics and matter cycling in soil

PECCAD Main Feature

Direct Pesticide Utilization

 $\mu_{max-BP}k_{BP,P}C_P$ $\mu_{max-BP} + k_{BP,P}C_P + k_{BP,hiq}C_{hiq} + k_{BP,loq}C_{loq}$

Cometabolic Degradation

 $q_{F,P} = (T_{y-F} \cdot (\mu_{F,hiq} + \mu_{F,loq}) + k_{F,P}) \cdot \frac{C_P}{K_{s-F,P} + C_P}$

Simplifying the Complexity of a Coupled **Carbon Turnover and Pesticide Degradation** Model

Gianna Marschmann¹, André H. Erhardt², Holger Pagel¹, Philipp Kügler² and Thilo Streck¹ ¹Institute of Soil Science and Land Evaluation ²Institute of Applied Mathematics and Statistics

PECCAD has Three Distinct Time Scales

Based on dimensional analysis, it is possible to propose a hierarchy of variables according to the time scales on which they evolve. Such a fast-slow system is amenable to bifurcation analysis: in the singular limit, two 3 dimensional systems can be analyzed separately.

Superfast Pesticide

Fast High Quality Carbon

Fast Bacterial Biomass

 $0 < \varepsilon = 1/(k_t \tau_x) \ll 1$

References

Pagel, H., et al. Biogeochemistry 117.1 (2014): 185-204 Wang et al., PloS one 9.2 (2014): e89252 Jones, Stuart E., and Jay T. Lennon, Proceedings of the National Academy of Sciences 107.13 (2010): 5881-5886 Govaerts, W. et al., "MATCONT and CL MATCONT: Continuation toolboxes in Matlab.", Tech. Rep (2011) **Desroches, M.**, et al. SIAM Review 54.2 (2012). 211-288

Bifurcation Theory

A bifurcation occurs when a small change made to parameter values in the model leads to a qualitative change in dynamic behavior of the system

PECCAD (**PE**sticide degradation **C**oupled to **CA**rbon turnover in the **D**etritusphere (Pagel et al. (2014)) has a 51 dim. parameter space

Results

Exponential dependence of microbial reactivation rate leads to complex model dynamics

Slov

Multiple time scales in the **PECCAD** model make a bifurcation analysis possible

c _P	$[\tilde{\mu}_{BP,P}(k_c c_i)]$	$-\tilde{m}_{BP,P}(k_cc_i)$	$\left] - c_P \tilde{q}_{F,P}(k_c c_i) + \tilde{I}_P \right.$
	$\begin{bmatrix} - & & & & & \\ & & & & & & & \\ & & & & &$		

 $\sqrt{\varepsilon} \frac{dc_{hiq}}{d\tau} = f_2 \left(k_c c_{hiq}, k_c c_{loq}, k_c c_P, k_c c_B, k_c c_{BP}, k_c c_F \right)$

 $\sqrt{\varepsilon} \frac{dc_B}{d\tau} = f_3 \left(k_c c_{hiq}, k_c c_{loq}, k_c c_P, k_c c_B, k_c c_{BP}, k_c c_F \right)$

 $\frac{dc_{loq}}{d\tau} = g_1 \left(k_c c_{hiq}, k_c c_{loq}, k_c c_P, k_c c_B, k_c c_{BP}, k_c c_F \right)$

 $\frac{dc_F}{d\tau} = g_2 \left(k_c c_{hiq}, k_c c_{loq}, k_c c_P, k_c c_B, k_c c_{BP}, k_c c_F \right)$

 $\frac{dc_{BP}}{d\tau} = g_3 \left(k_c c_{hiq}, k_c c_{loq}, k_c c_P, k_c c_B, k_c c_{BP}, k_c c_F \right)$

Contact: gianna.marschmann@uni-hohenheim.de

Kinetic Functions give the Time Scale of a Variable

As part of a nondimensionalization procedure, three scaling constants are introduced. The scale of a variable provides an estimate of its maximum order of magnitude.

Time:

Example: Pesticide Concentration

Active microbial biomass is a driver of biogeochemical cycles, but existing minimal models representing physiological states lack experimental validation. How can we distinguish between models?

Time Scales and Dimensional Analysis

The complexity of coupled soil models has to be reduced in order to conduct a stability analysis. This is achieved by identifying multiple time scales.

Carbon concentrations: $C_i = k_c \cdot c_i$, $i = \{hiq, loq, P, B, BP, F\}$ $t = k_t \cdot \tau$ $\tau_x = \max_{0 \le c_i \le 1} \tau_x(k_c c_i)$ **Kinetic functions:**

$$\frac{dc_p}{d\tau} = c_P \left[-\frac{\tilde{\mu}_{BP,P}(k_c c_i)}{Y_{s-BP,P}} - \tilde{m}_{BP,P}(k_c c_i) \right] - c_P \left[\tilde{q}_{F,P}(k_c c_i) + \tilde{I}_P \right]$$

Examples of kinetic functions that define characteristic time scales for the pesticide variable. Cometabolic degradation $q_{F,P}$ is the dominant process.