Using R for Large Spatiotemporal Data Sets

Edzer Pebesma

EGU 2017, Session IE3.6, Tue, 25 apr 2017
How large are the datasets YOU analyse with R?

Current limitations:
- R: in-memory
- *raster*: on-disk
- *dplyr*: in-database

Sources of large geo-datasets:
- remote sensing (hyperspectral; time series)
- laser altimetry
- (climate) model results

Challenges:
- avoid download
- distributed storage & computing
Outlook to http://r-spatial.org developments:

1. sf: simple features for R (done)
 - handle geometry in a list-column in a data.frame or tibble
 - pipe-friendly, dplyr compat, tidyverse, st_join for spatial joins
 - merges vector capacity of sp, rgdal, and rgeos
 - coordinate conversions and transformations
 - geom_sf support in ggplot2

2. stars: spatiotemporal tidy arrays for R (still to do)
 - multidimensional arrays with space and time among its dimensions
 - e.g. non-raster time series, raster time series with multiple, or mixed attributes
 - extend on-disk to remote, in-cloud storage (API)
 - pipe-based, dplyr-style workflows
 - develop workflow on small samples, flexibly downsampling dimensions

Both projects enjoy support from the R consortium
Why replace sp with sf?

- sustainability: rewrite 15+ years code of sp, rgdal, rgeos
- use modern GDAL and GEOS libraries, and modern C++11 & Rcpp interfaces
- implementing simple features ISO standard:
 ⇒ 1:1 mapping and round tripping between R and databases, geojson, LOD, etc.
- direct Well-Known Binary (WKB) read/write and S3 is much faster than rgdal!
- “tidy” spatial analysis:
 - data.frame based, easier to understand data structure
 - implements dplyr verbs, with sticky geometry
 - ggplot2 support by geom_sf
 - direct DBI interface to spatial databases
sf examples

```r
> library(sf)
> nc = read_sf(system.file("gpkg/nc.gpkg", package="sf"))
> library(units)
> (a <- nc %>% mutate(area = st_area(.)) %>%
+   group_by(group = c(rep(1:5, each = 20))) %>%
+   summarize(area = set_units(sum(area), km^2)))

Simple feature collection with 5 features and 2 fields
  geometry type:  MULTIPOLYGON
  dimension:      XY
  bbox:           xmin: -84.32385 ymin: 33.88199 xmax: -75.45698 ymax: 36.58965
  epsg (SRID):    4267
  proj4string:    +proj=longlat +datum=NAD27 +no_defs

# A tibble: 5 x 3
   group area     geom
   <int> <units> <simple_feature>
1     1 22022.91 <MULTIPOLYGON...
2     2 22866.40 <MULTIPOLYGON...
3     3 26491.78 <MULTIPOLYGON...
4     4 24139.21 <MULTIPOLYGON...
5     5 31511.46 <MULTIPOLYGON...

> par(mar=rep(0,4))
> plot(a["area"], main = "", border = 'grey')
```

```
> library(ggplot2)
> library(maps)
> world1 <- sf::st_as_sf(map('world', plot = FALSE, fill = TRUE))
> laea <- "+proj=laea +y_0=0 +lon_0=155 +lat_0=-90 +ellps=WGS84"
> world2 <- sf::st_transform(world1, laea)
> fill = sf.colors(xc = factor(1:253))
> ggplot() + geom_sf(data = world2, fill = fill)
```
stars: spatiotemporal tidy arrays

Resolve R’s native array limitations:
- cannot handle heterogeneous data records (e.g. consisting of a numeric, a logical and a Date) like we typically have in `data.frame`'s,
- can only deal with in-memory data, and
- do not handle spatial or temporal array dimensions, only character dimnames.

Resolve `raster`’s limitations:
- 2 dimensions are always space (\(=\) raster)
- cope with n-D dense arrays, rather than 3-D raster:
 - stack is either multiple colors, or multiple times, not both
 - brick or stack? low level details exposed to users
- handle I/O natively (not through `rgdal`)
- handle data sizes larger than those fitting on local disk
- S4

stars’ approach: support
- array dimensions that *can* be space, time, can also be e.g. spectral, simulation, model
- e.g. arrays with features (1D) \(\times\) time1 \(\times\) time2 (2D), with time1 time of prediction and time2 forecast lag
- heterogeneous records, just like `data.frame`
- S3 `data.frame` objects that proxy real data, like `dplyr`’s database proxies
- proxy data are not the first \(n\) records, but a thinned (subsampled) version of the array, revealing large-scale structure
- dense, but both regular and irregular arrays
- distributed storage, distributed computing, using lazy, distributed evaluation
- fast development times by developing the workflow on subsampled proxy, when finished applying it to the full data
- pipe-based, `dplyr`-style verbs