Water, heat, and vapor flow in a deep vadose zone under arid and hyper-arid conditions: a numerical study

Raneem Madi and Gerrit H. de Rooij

Rationale
Groundwater recharge in arid regions is driven by irregular rainfall that infiltrates into deep vadose zones in which water moves as a liquid as well as a vapor. The processes below the root zone are underresearched.

Approach
- Simulation of flow of liquid water, heat, and vapor
- 100 m deep profile of an unvegetated sandy loam
- Geothermal gradient: 3.5 °C / 100 m
- Two parameterizations of the retention curve, tailored for dry conditions
- Burn-in period, then 120-year period with two synthetic rainfall records

Objectives
- Examine the effect of the soil hydraulic parameterization
- Determine which features of the rainfall record generate groundwater recharge
- Quantify the effect of vapor flow in a deep vadose zone

Numerical model
Hydrus_1D (Šimůnek et al., 2016): solver for the coupled Richards’ and heat flow equations. Diffusive vapor flow with instantaneous equilibrium between the matric potential and the vapor pressure.

The daily temperature model
Hydrus_1D needs the daily minimum (Tmin) and maximum temperature (Tmax) on input.
- Annual sinusoidal trend of the daily mean temperature
- Normally distributed white noise superimposed
- Tmax - Tmin lognormally distributed, centered around the mean

The rainfall records
Truncated modified Bartlett-Lewis model with gamma-distributed rainfall rates (Pham et al. 2013)

Dry season: Dec - Sep.
- Arid rainfall: 31 cm yr⁻¹ (a)
- Hyper-arid rainfall: 8 cm yr⁻¹ (b)

Graphs show 3-year samples

The soil hydraulic parameterizations
- Non-zero air-entry value to keep hydraulic conductivity near saturation realistic (Ippisch et al., 2006)
- The dry end is logarithmic


θ(h) = \begin{cases} 0, & h \leq h_0 \\ \theta_1 \left[ \left( \frac{\ln \left( \frac{h}{h_0} \right) }{\ln (2^k)} \right)^{2k} \right], & h_0 < h < h_t \\ \theta_2, & h \geq h_t \end{cases}

Developed by us, based on Ippisch et al. (2006) (RIA):

θ(h) = \begin{cases} 0, & h \leq h_b \\ \theta_0 \left[ \left( \frac{\ln \left( \frac{h}{h_b} \right) }{\ln (2^k)} \right)^{2k} \right], & h_b < h < h_t \\ \theta_0, & h \geq h_t \end{cases}

Both functions were combined with Mualem’s (1976) conductivity function.

Infiltration is dominated by clusters of wet years and takes decades to move down
- Arid, FSB
- Arid, RIA
- Hyper-arid, FSB
- Hyper-arid, RIA

RIA dampens and slows the signal more than FSB. In arid soils, infiltration variations penetrate to 60 (RIA) or 100 m (FSB). In hyper-arid soils, there is no temporal variation below 30 m. FSB generates considerably more groundwater recharge than RIA in both rainfall regimes.

The vadose zone filters the rainfall signal
The arid rainfall signal is delayed by n years and averaged over 2k + 1 years. FSB gives a more spiked signal than RIA, and is 6 years faster at 20 m depth. The hyper-arid signal dampens out rapidly (not shown).

Water flow below 8 m is (nearly) zero
- Evaporation from the top soil determines how much water is available for groundwater recharge
- Vapor flow affects recharge by a few percent only
- Evaporative loss is determined by the parameterization of the retention curve

Water flow in cm (%) of rainfall

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Arid</th>
<th>Hyper-arid</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSB</td>
<td>173.9 (4.8%)</td>
<td>15.3 (1.6%)</td>
</tr>
<tr>
<td>RIA</td>
<td>70.7 (1.9%)</td>
<td>9.3 (1.0%)</td>
</tr>
</tbody>
</table>

No vapor flow: 166.3 cm

Contact: gerri.de Rooij@ufz.de