Pedoarchaeology of Early Agricultural Period Irrigation Systems in the Tucson Basin of the American Southwest

Jeffrey A. Homburg^{1,2,3} and Fred Nials⁴

1 – Catena Affiliates, Tucson

2 – Statistical Research, Inc., Tucson

3 – School of Anthropology, University of Arizona

4 – Desert Archaeology, Tucson

THE UNIVERSITY OF ARIZONA.

Rationale for Studying Anthropogenic Effects on Desert Agricultural Soils

- Soil formation is slow in desert climates, so cultivation effects persist for millennia.
- Many ancient fields have remained uncultivated since they were abandoned, so historic farming has not masked long-term soil properties from past use.
- Agricultural features provide clues for identifying and sampling cultivated and control soils.
- Ancient farming systems are relevant to modern studies of agricultural sustainability.

Research Objectives

- Assess agricultural sustainability and anthropogenic effects of Early Agricultural period irrigation systems on soil quality in the Tucson Basin.
- Model possible prime agricultural agricultural suitability using GIS, NRCS SSURGO soil survey, and prehistoric agricultural features recorded in AZSITE.

Methods

- 238 soil samples were collected from cultivated and uncultivated contexts at Las Capas and 24 from Sunset Road.
- Soil pH, organic C, N, total and available P, EC, SAR, CaCO₃, bulk density, and particle-size analyses were analyzed.
- NRCS SSURGO map data and prehistoric field locations from AZSITE were analyzed in GIS to model agricultural suitability for land the Tucson Basin.

Previous Soil Studies of Ancient/Traditional Agriculture in the Southwest

Diversity of U.S. Southwest Agricultural Strategies

Kind of Agriculture	Landforms
Irrigated:	Valley floodplains/terraces
• Canal	Floodplains/terraces mostly perennial rivers
 Flood recession 	Lower Colorado and Gila Rivers
Floodwater	Floodplain ephemeral stream
Dryland:	Uplands and valley margins
 Eolian materials 	Loess uplands, stable dunes in valleys and uplands, tephra fields
 Rock grid, mulch, pile 	Mostly valley margin, some upland hillslopes
Runoff terrace	Valley margins (alluvial fans, footslopes), upland hillslopes

Dryland Agricultural Rock Features

Rock mulch

Rock pile

Rock grid

Rock alignments for terraces

Turney (1929) Map of Hohokam Canals in the Phoenix Basin

Canal Building in the Salt River Valley with a stene hoe held in the hand without a handle. These were the original angineers, the true pioneers who built, used and abandoned a canal system when London and Paris were a cluster of wild hats.

Las Capas

Las Capas serial overview, 2008. 2008 T Z & & S & B

ALC: NO

Sunset Road

- Las Capas SiCL for fields and controls; SiL for borders.
- Sunset Loam for field and controls and SL for planting holes.
- These textures typically have high moisture- and nutrient-holding properties.

Las Capas - Sand (%)

Las Capas - Silt (%)

Las Capas - Clay (%)

Sunset - Sand (%)

Sunset - Silt (%)

Sunset - Clay (%)

Sunset - Hydraulic Soil Properties

Cultivated soils have about twice the available water capacity of the controls at Sunset Road.

Las Capas - pH (1:1 soil:water)

Las Capas - pH

- Soils are slightly (pH 7.4– 7.8) alkaline to moderately (pH 7.9–8.4), levels suitable for maize cultivation adapted to SW.
- Differences between the fields, borders, holes and controls are insignificant.

Sunset - pH

Model of Organic Matter Change Over Time (after Sandor 1983)

- Organic C is significantly lower in the fields and borders than controls at Las Capas and higher in the fields and holes than controls at Sunset.
- Organic C is relatively low at both sites, but it is noteworthy that the Hopi successfully farm at similarly low levels in northern Arizona.

Las Capas - SAR

- Maize productivity may have been reduced ~10% at these SAR and EC levels.
- Higher SAR levels in deeper strata may be caused by capillary rise above the water table and/or accumulation of Na leached from above from historic irrigation.

Las Capas - Total N (g/kg)

Sunset - Total N (g/kg)

- Compared to controls, total N is similar in the fields and borders at Las Capas and higher in the fields and holes at Sunset.
- Sunset has higher total N levels than Las Capas, possibly from later historic irrigation.

- Available P is significantly elevated in the fields and controls relative to the borders at Las Capas.
- There is little difference between samples at Sunset. Levels above 5 mg/kg likely indicate P is not deficient.

- Bulk densities are higher in the fields than the controls at both sites and significantly higher in the planting holes at Sunset.
- Compaction at such low levels would not have an adverse effect on maize productivity levels for the textures at both sites.

Predictive model of prime farmland (in red) in the Tucson **Basin in relation to** ancient agricultural fields identified by archaeological surveys.

Conclusions

- Early Agricultural Period fields have elevated organic C, N, and available P levels, indicating that the ancient farming system was sustainable.
- Canals supplied enough nutrient-rich silt and clay to renew soil fertility and counter losses caused by crop uptake, leaching, volatilization, and oxidation.
- SAR levels, though elevated in the fields, are below levels that could significantly reduce maize productivity.
- Much more research is needed on soil hydraulic properties irrigation.
- Subterranean erosion (piping) was likely a factor in field abandonment. Natural alluvium at the site is highly dispersive and prone to piping.

Recommendations

- It is important for future studies of ancient irrigation systems to search for the agricultural fields, not just the canals.
- The Las Capas and Sunset Road studies are important milestones, but much more research is needed on ancient irragric soils of the Southwest.

Acknowledgements

- Pima County Cultural Resources and Historic Preservation Division: Roger Anyon and Ian Millikn
- Desert Archaeology: archaeologists
- **SWCA:** Suzanne Griset and Jerome Hesse
- University of Arizona: Gary Huckleberry (Sunset Road project geoarchaeologist)
- Soil analysts: Victoria Sotelo (SRI), Christina Whitbread (Catena Affiliates) and soil labs at Iowa State University, Northern Illinois University, North Dakota State University, and SRI.

