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Motivation
Several problems in solar physics involve 
multiple scales. For ex., in solar coronal 
flares the loop length is ~109m whereas 
kinetic scales are of ~10-1m - a huge 
difference of scales that is beyond 
foreseeable simulat ion capabi l i t ies. 
Moreover, while fluid models work well at 
scales much larger than gyro-radius, kinetic 
models are required at the skin-depth 
scales. Therefore, these are multi-scale 
and multi-physics problems. Global 
kinetic simulations are also not possible 
for such large systems.

Idea - coupling MHD with PIC
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(ion mass mi) is taken as unity and the ratio of ion mass to electron mass (me) is a user-defined

parameter. The number density of ions (ni) is equal to the number density of electrons (ne) by

charge neutrality and is set according to

n ≡ ni = ne =
ρMHD

mi + me
, (5)

where ρMHD is the density value received from MPI-AMRVAC.

The particles are initialized with a velocity (v) given by

v = u0 + uth (6)

Here u0 is a drift velocity which is derived from the flow and current density values supplied by

MPI-AMRVAC. The current density, J, is simply calculated by ∇ × B in MPI-AMRVAC and also

passed to iPIC3D. The drift velocity of species s, u0,s is,

u0,s =
[1 + (ms′/ms)][(qs′/ms′)uMHD − (J/ρMHD)]

[(qs′/ms′) − (qs/ms)]
(7)

Here s′ is the other species with charge qs′ and mass ms′ , uMHD is the fluid flow velocity from

MPI-AMRVAC. Eq. 7 is derived by expressing the MHD flow and current density in terms of

contributions from the two-species velocities and then solving for the two-species velocities. The

particles are also assigned a random thermal velocity uth. This is done by randomly assigning a

thermal speed (v) to the particles in each cartesian direction. A uniform distribution of random

variables r between 0 and 1 is converted into a Maxwellian distribution of speeds vd by [27],

vd = vth

√
−2 ln(1 − κr). (8)

Here κ is a number very close to, but slightly smaller than, unity to avoid numerical problems

with the logarithm function. vd is further multiplied by cos(θ)(sin(θ)) to get the velocity v in the

cartesian x(y) directions, where θ is a uniformly distributed random variable between 0 and 2π.

Similar procedure is used in the third direction, and this can also handle anisotropic distribution in

the two directions. However, in this work we are assuming an isotropic distribution, using a scalar

pressure from MHD. This produces the following speed distribution function in each cartesian

direction,

f (v) =
(2v
v2

th

)
exp
(−v2

v2
th

)
. (9)
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Here vth is the thermal velocity which is derived from the MHD pressure and density. The species

dependent thermal velocity is

vth,s =

√
ps

ρMHD

(
1 +

ms′

ms

)
. (10)

ps is the pressure of species s. This is derived from MPI-AMRVAC, however MHD only provides

a single fluid pressure and we have the freedom to distribute this pressure between the two particle

species depending on what temperature ratio we want between the two species. The pressure is

divided between ions and electrons as

pe = ζp, (11)

pi = (1 − ζ)p, (12)

where ζ is the fraction of pressure supported by electrons. Thus, assuming quasineutrality, the

temperature ratio is Ti/Te = (1 − ζ)/ζ.

The time-dependent boundary conditions to the PIC simulation are provided from MHD as

shown in Fig. 1. At every time step, MPI-AMRVAC supplies the values of its physical quantities

at the boundary of the PIC region as described in the time-stepping method (Sec. 2.3). In the field

solver which solves the Maxwell equations, the electric field on the outermost active node of the

PIC code is set from the MHD value [28]. After the magnetic field is advanced by the induction

equation, the magnetic field on the cell-centers of the ghost layer and the two outermost active

cells is set by the MHD values. This enables a smooth coupling between the MHD and PIC zones

without developing ∇ ·B errors. The three outermost active cells form a particle repopulation zone

in which all the particles are deleted at every time step and new particles introduced with a density

n and velocity v as shown in Eqs. 5-6 and their description.

2.2. Backward coupling

An important part of two-way coupling is backward coupling. In this the PIC solution is used

to provide feedback to the MHD simulation. This is different from one-way coupling and coupling

with particles where MHD fields are used to evolve particles [29], but the particle moments are

not used to update the MHD simulation. To obtain fluid quantities for feedback, moments of the

velocity distribution function have to be taken. iPIC3D calculates the fluid moments from the
8
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particle distribution as described in Ref. [21]. This generates the primitive variables needed by

MHD. After every time step these quantities are passed back to the MHD code. MPI-AMRVAC

advances the conservative variables as in Eqs. 1-4. Therefore the iPIC3D moments are converted

into conservative variables and these are then used to update the MHD solution in the PIC domain.

However, we observed that directly replacing the old MHD variables by the PIC moments in

the entire PIC region creates some distortions at the MHD and PIC interface. This sometimes also

leads to ∇ ·B = 0 problems. Therefore, the transition from PIC zone to MHD zone should be made

smoothly. This is done by taking a weighted average of the MHD state and the PIC moments. A

conservative variable ψMHD of the MHD solution in the PIC zone is replaced by ψ̂ as follows

ψ̂ = (1 − w)ψMHD + wψPIC (13)

ψMHD is one of the conservative MHD variables like mass density (ρ), momentum density (ρv),

magnetic field B, or energy density e. ψPIC is the same conservative variable derived from the

PIC moments. w is the weight given to the PIC solution and 1 − w is the weight given to the

MHD solution. This weight function w is chosen such that the MHD solution gets unity weight

at the boundary of PIC zone, and zero weight to the PIC solution. Then this function rapidly

rises close to unity within a transition layer which surrounds the PIC zone boundary, inside the

PIC zone. Interior of this transition layer, the weight is very close to unity and almost uniform,

signifying that the MHD solution is almost entirely overwritten by the PIC solution, with the MHD

solution having negligible weight. This is different from the coupling with BATS-R-US where this

transition layer is not used. Various weight functions have been used in our tests and the following

was found to work satisfactorily,

w = (1 − exp(−(x − x1)2/δ2))(1 − exp(−(x − x2)2/δ2))

×(1 − exp(−(y − y1)2/δ2))(1 − exp(−(y − y2)2/δ2)) (14)

Here the PIC simulation domain is bounded by x1 ≤ x ≤ x2 and y1 ≤ y ≤ y2. We can see that this

weight function falls exactly to zero at the boundaries. Parameter δ sets the width of the transition

layer. Outside the transition layer, i.e., |x− x1,2| > δ and |y− y1,2| > δ, this function is close to unity.

iPIC3D is capable of handling large PIC domains, of the order of several hundred ion skin-depths
9
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Geospace Environmental Modeling (GEM) simulation

Anisotropy & Agyrotropy

In forward coupling, MHD provides initial and boundary 
conditions to PIC. The electric and magnetic fields are directly 
copied from the MHD solution. At every time step, electric field 
solver utilizes the MHD values at the outermost active cell corners 
as the boundary conditions. After every time step, the magnetic 
field at the three outermost cell centers are fixed by MHD values

The idea is to simulate the global system by MHD and 
simulate only a small region where kinetic physics is 
important by PIC. MPI-AMRVAC is used for MHD as it 
has adaptive mesh refinement and Hall-MHD. 

i P I C 3 D , a n i m p l i c i t 
moment method code is 
used for the PIC domain, 
as it can have 5X-10X 
larger time steps and 
10X-50X larger 
g r i d s p a c i n g 
c o m p a r e d t o 
explicit PIC codes

iPIC3D has been similarly coupled with the BATS-R-US 
MHD code in Daldorff et al., JCP, vol. 268 (2014) 236-254. 
In this work the PIC grid overlaps the MHD grid.

The PIC simulation is started at some MHD time step n. The 
MHD state is advanced to step n+1 and the time averaged 
boundary conditions are passed to PIC, to advance its state to 
step 1. Then PIC moments are passed back to MHD to 
update its solution at step n+1, and the process is repeated.

The particles are initialized with a 
Maxwellian distribution of density set by

Their velocity is set by

Their drift velocity u0 is derived by splitting the MHD flow and 
current density into two-fluid velocities, giving

The thermal velocity uth has 
a Maxwellian distribution

The thermal speed vth is determined 
from MHD pressure

The pressure is split 
into ions and electrons

After every PIC time step, moments of the distribution function are 
calculated to gather the fluid variables, which are then passed back 
to MHD. The MHD solution in the PIC domain is updated by 
taking a weighted average of the MHD and PIC solutions as 
follows,

The weight function w determines the weight given to the PIC 
solution. It is shaped such that zero weight is given to the PIC 
solution at the MHD-PIC interface, while it rapidly rises within a 
layer of width delta so that the PIC solution receives almost unity 
weight in the interior. The weight function for ex., 

δ

The two-way coupling has been tested successfully for energy and 
momentum conservation in steady-state systems. Below we show  
results of whistler wave propagation through the PIC domain 
shown in black box. The 8 MHD quantities are showing good coupling.

The above figure is made after a coupling time of 1.06 wave period. A 
trace is taken along the black diagonal line shown above and the two-
way coupled solution is plotted against the MHD solution below.

We see very good coupling at long wavelengths even for the fast 
magnetosonic wave in all the 4 MHD quantities. Thus, the two-way 
coupling works well for wave propagation

GEM challenge is a benchmark problem for simulating 
reconnection in magnetospheres. A double GEM challenge is 
simulated with MHD, including PIC feedback in bottom current 
layer around the X- point. PIC feedback correctly reproduces 
the quadrupolar Hall magnetic field.

Trace of quantities through the two lines shown in left figure. 
The left portion includes PIC feedback. We see no 
distortion at the coupling interface and smooth 
propagation of waves across the interface.

0.9 1.2 1.46.211e-01 1.494e+00

(a) pi_x_y
0.75 1.1 1.246e+00

(b) pi_y_z
6.807e-01 0.9 1.1

1.21
(c) pe_x_y

1.47.293e-01 1.653e+00
(d) pe_y_z

6.669e-01 1.343e+001.20.9 1.1

The PIC is able to produce effects that cannot be captured 
by MHD. For ex. the temperature anisotropy in the PIC domain 
is shown below.

Agyrotropy (difference in the two perpendicular pressures) is 
also observed. Electrons show stronger anisotropy and 
agyrotropy.

Conclusions
• Two-way coupling between MPI-AMRVAC and iPIC3D 

has been implemented, and the results have been 
submitted for peer-review. 

• There are several differences compared to Daldorff et 
al., 2014 - like the handling of boundary conditions, grid 
setup, time stepping, backward coupling  

• The coupling has been successfully tested for energy 
and momentum conservation, variety of plasma waves 
propagation, and magnetic reconnection 

• Coupling is suitable for application to large scale 
systems of waves, reconnection, and shocks  
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