The effects of flame-heating on rock strength: Towards a combined drilling technology

Edoardo Rossi1,2, Michael A. Kant2, Philipp Rudolf von Rohr2, Martin O. Saar1

1Geothermal Energy and Geofluids group, Institute of Geophysics, ETH Zürich, Sonneggstrasse 5, 8092 Zürich, Switzerland
2Transport Processes and Reactions Laboratory, Institute of Process Engineering, ETH Zürich, Sonneggstrasse 3, 8092 Zürich, Switzerland

1 Motivation

In a geothermal project, the drilling costs are responsible for \(\approx 40\% \) of the overall costs. Indeed, drilling in hard rocks with conventional drilling methods (roller-cone and PDC bits) implies very high drill bit wearing and low rates of penetrations (ROP).

\[C_{d,i} = \frac{C_{b,i} + C_{r}\left(T_{d,i} + T_{i,l} + T_{c,i}\right)}{\Delta D_{i}} \]

when: \(\begin{cases}
\text{ROP} \uparrow & \Rightarrow T_{d,i} \downarrow \\
\text{bit wearing} \downarrow & \Rightarrow T_{i,l} \downarrow
\end{cases} \quad \Rightarrow \quad \text{Drilling costs} \downarrow \]

\(C_{b,i} \): cost of the bit run \textit{i} \quad \textit{[CHF]}
\(T_{d,i} \): trip time \textit{[h]}
\(C_{r} \): rig cost \textit{[CHF]}
\(T_{c,i} \): connection time \textit{[h]}
\(\Delta D_{i} \): drilled distance \textit{[m]}

2 Concept

Combine conventional drilling with thermal drilling methods to drill through hard rocks:

- Flame treats the rock surface
 - Thermal weakening of the material (cracking, mineralogical changes…)
- Cutting tools export the weakened material
 - Lower weight on bit (WOB) and torque \(\rightarrow \) lower bit wearing rate
 - Increase rate of penetration in hard rocks (ROP)

3 Preliminary Experiments

Experiments on rate of penetration (ROP) in thermally treated Granite showed the effectiveness of the presented method. Granite samples are flame-treated at different temperatures.

- Increase of ROP for \(T > 400{\degree}C \)
- At 1000{\degree}C, four times faster drilling

\[\text{Fig. 2: Relative rate of penetration in Granite at different treatment temperatures.} \]

4 Application

Design of a combined thermo-mechanical drill head

- 6.5-inch drill head
- 50 kW burner. Combustion fluids: methane and oxygen
- Drilling cutters next to flame-jets
- Air shielded-flame nozzles:
 - Prevent thermal wearing of cutters
 - Enhance flame heat transfer in aqueous environment

\[\text{Fig. 3: Combined thermo-mechanical drill head and air shielding.} \]

References