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Model-dependency of the afternoon 
peak of precipitation im summer 

The added-value of Convection-Permitting Climate Modeling (CPCM; review 
paper Prein et al. 2015) - State of the art:  

• better representation of deep convection and diurnal cycle of precipitation in 
summer  

• improved representation of extreme events on hourly time scales 
• better representation of the spatial structure of precipitation objects 
• improved frequency of wet-days (overcome the ‘drizzling effect’ of coarser 

resolution  RCMs with parametrized convection) 
Goals of this study 
• Estimate the role of physical parameters on the representation of  

precipitation in climate simulations in the Alpine region  
• Investigate the role of the driving data 

Fig. 1 EURO-CORDEX simulations (12.5 

km resolution) are downscaled at 3 km 

over the Greater Alpine Region. From 

Prein et al. 2015. 

Domain: Greater Alpine Region 
Resolution: 0.0275° (~3km) 
Period: 2006 – 2010 
Spin-up run (soil): 17 years 
Reference simulation with COSMO-CLM v5.0 
• REF3  
• Driving data CLM12: EURO-CORDEX 0.11° hindcast 

(K. Keuler, BTU Cottbus); update freq.:3-hourly 

WRF simulation WRF3 
similar setup as for REF3 
  
  

• Strong agreement between the simulations driven with CCLM12 
• sensitivity to the parameters tested for turbulence and microphysics small compared to 

the sensitivity to the driving data (role of the internal variability in CLM12) 
• The influence of the parameters tested is small compared to the influence of the large 

scale forcing (in winter) and the convective processes (in summer) 

• Summer: good representation of the mean diurnal cycle in CCLM and WRF at 3km, 
but based on different processes and compensation of biases: 
• WRF produces too large areas of too weak precipitation 
• CCLM produces too small but too intense precipitation 

Regional and Local Climate Modelling Research Group 

Name and reference 
Type of 

measurments 
Domain and 
resolution 

Period and 
frequency 

INCA* 
Haiden et al. 2011 

Radar + stations 
Austria+ 

1 km 
Since 2006,  

hourly 

GPARD-1* 
Hofstätter et al. 2015 

Rain gauges 
Austria+ 

1 km 
Since 1961,  

daily 

*Provided by the Austrian Department for Meteorology and Geodynamics (ZAMG)  

Parameters Description Name 

Lateral 
boundary 
conditions 

Increase frequency (3h 1h) and include W 
New driving run: ERAint_011_r2i1p1 

LBC_FW 

IFS as driving data (stops in 2009) LBC_IFS 

Turbulence 

Unstable summer condition 
Decrease turbulent length scale: tur_len=150 
q_crit=1.6;iadv_order=5 

TURB1 

Turn off correction of vertical turbulent diffusion 
(turbulent heat and moisture fluxes due to subgrid-scale 
condensation) lexpcor=FALSE 

TURB2 

Orography Smoothed orography at 0.11° OROG11 

Microphysics 
Tuning microphysics 
- increase falling speed of snow: v0snow=15 
- decrease conversion rate to graupel: qc0=0.0005 

MICROPHYS 
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• LBC_IFS: excellent 
agreement in winter 
with GPARD1 and 
INCA 
 role of the 
driving data  (large-
scale forcing, frontal 
activity in the Alps) 

• Added-value: daily 
max, extremes 

• CPCM: too many 
dry days in summer 
 

Fig. 3 Daily sum (top) and maximum (bottom) of hourly total precipitation, winter (left) and 

summer (right) for 2006-2009, Austria. 
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Frequency-intensity distribution of total precipitation 

• Few sensitivity to TURB, OROG11, 
MICROPHYS, LBC_FW 

Winter 
• strong height-

dependency of daily 
extreme values and 
occurrence of hourly 
precipitation  

• OROG11 and CLM12: 
influence of the 
orography in winter  
 too strong 
interaction with the 
large-scale flow 

Fig. 4 Left: Mean, 10th and 90th quantiles of daily precipitation per range of surface elevation 

(200m height classes), for wet days (> 1 mm.day-1). Right: same as left, but for the frequency 

of occurrence of wet hours (>0.1mm.hour-1) 

Fig. 2 Diurnal cycles of 

total precipitation in 

summer (JJA) 2006-

2009, for Austria. (Top) 

mean precipitation, 

(middle) fraction of 

surface with non-zero 

precipitation, (bottom) 

average intensity of 

precipitation.   Hour (UTC) 
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• Good representation of  the peak of precipitation in 
average in CPCM (both CCLM and WRF) 

• WRF: afternoon peak primarily driven by increased of 
precipitating surface 

• CCLM-CPCM:  
• -15% of wet surface compared to INCA 
• afternoon peak driven by increased of mean intensity 

• LBC_IFS: improved duration of the late afternoon peak 

Summer 
• positive bias at all elevations for CPCM, 

negative for CLM12 
• Under-estimation of the frequency of 

occurrence of hourly precipitation in 
CPCM, especially in low-lands (<1000m) 


